首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heinz Steinbring 《ZDM》2008,40(2):303-316
The study tries to show one line of how the German didactical tradition has evolved in response to new theoretical ideas and new—empirical—research approaches in mathematics education. First, the classical mathematical didactics, notably ‘stoffdidaktik’ as one (besides other) specific German tradition are described. The critiques raised against ‘stoffdidaktik’ concepts [for example, forms of ‘progressive mathematisation’, ‘actively discovering learning processes’ and ‘guided reinvention’ (cf. Freudenthal, Wittmann)] changed the basic views on the roles that ‘mathematical knowledge’, ‘teacher’ and ‘student’ have to play in teaching–learning processes; this conceptual change was supported by empirical studies on the professional knowledge and activities of mathematics teachers [for example, empirical studies of teacher thinking (cf. Bromme)] and of students’ conceptions and misconceptions (for example, psychological research on students’ mathematical thinking). With the interpretative empirical research on everyday mathematical teaching–learning situations (for example, the work of the research group around Bauersfeld) a new research paradigm for mathematics education was constituted: the cultural system of mathematical interaction (for instance, in the classroom) between teacher and students.  相似文献   

2.
In Iran, high school graduates enter university after taking a very difficult entrance exam called the Konkoor. Therefore, only the top-performing students are admitted by universities to continue their bachelor's education in statistics. Surprisingly, statistically, most of such students fall into the following categories: (1) do not succeed in their education despite their excellent performance on the Konkoor and in high school; (2) graduate with a grade point average (GPA) that is considerably lower than their high school GPA; (3) continue their master's education in majors other than statistics and (4) try to find jobs unrelated to statistics. This article employs the well-known and powerful statistical technique, the Bayesian structural equation modelling (SEM), to study the academic success of recent graduates who have studied statistics at Shahid Beheshti University in Iran. This research: (i) considered academic success as a latent variable, which was measured by GPA and other academic success (see below) of students in the target population; (ii) employed the Bayesian SEM, which works properly for small sample sizes and ordinal variables; (iii), which is taken from the literature, developed five main factors that affected academic success and (iv) considered several standard psychological tests and measured characteristics such as ‘self-esteem’ and ‘anxiety’. We then study the impact of such factors on the academic success of the target population. Six factors that positively impact student academic success were identified in the following order of relative impact (from greatest to least): ‘Teaching–Evaluation’, ‘Learner’, ‘Environment’, ‘Family’, ‘Curriculum’ and ‘Teaching Knowledge’. Particularly, influential variables within each factor have also been noted.  相似文献   

3.
College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students’ attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students’ attitudes toward mathematics during a ‘mainstream’ calculus course while controlling for student backgrounds. The attitude measure combines students’ self-ratings of their mathematics confidence, interest in, and enjoyment of mathematics. Three major kinds of instructor pedagogy, identified through the factor analysis of 61 student-reported variables, are investigated for impact on student attitude as follows: (1) instructors who employ generally accepted ‘good teaching’ practices (e.g. clarity in presentation and answering questions, useful homework, fair exams, help outside of class) are found to have the most positive impact, particularly with students who began with a weaker initial attitude. (2) Use of educational ‘technology’ (e.g. graphing calculators, for demonstrations, in homework), on average, is found to have no impact on attitudes, except when used by graduate student instructors, which negatively affects students’ attitudes towards mathematics. (3) ‘Ambitious teaching’ (e.g. group work, word problems, ‘flipped’ reading, student explanations of thinking) has a small negative impact on student attitudes, while being a relatively more constructive influence only on students who already enjoyed a positive attitude toward mathematics and in classrooms with a large number of students. This study provides support for efforts to improve calculus teaching through the training of faculty and graduate students to use traditional ‘good teaching’ practices through professional development workshops and courses. As currently implemented, technology and ambitious pedagogical practices, while no doubt effective in certain classrooms, do not appear to have a reliable, positive impact on student attitudes toward mathematics.  相似文献   

4.
The purpose of this research is to investigate students’ cognitive behaviour in the subjects of function, limit, and derivative according to gender. The research was conducted with the participation of 67 female and 58 male 11th grade students of Gazi High School in Eskisehir in the academic year 2000/2001. The data were obtained through a test consisting of 18 open-ended questions. At the end of the analysis, it was seen that there were significant differences in the steps ‘acquiring knowledge of definition’, ‘understanding’, ‘analysis’, ‘synthesis’ and ‘evaluation of cognitive behaviour’ between male and female students, but there were no significant differences in the step ‘application of cognitive behaviour’.  相似文献   

5.
The fundamental theorem of arithmetic is one of those topics in mathematics that somehow ‘falls through the cracks’ in a student's education. When asked to state this theorem, those few students who are willing to give it a try (most have no idea of its content) will say something like ‘every natural number can be broken down into a product of primes’. The fact that this breakdown always results in the same primes is viewed as ‘obvious’. The purpose of this paper is to illustrate with a number of examples that the ‘Unique Factorization Property’ is a rare property and the fact that the natural numbers possess this property is ‘fundamental’ to our understanding of this number system.  相似文献   

6.
Internationally, the consequences of the ‘Mathematics problem’ are a source of concern for the education sector and governments alike. Growing consensus exists that the inability of students to successfully make the transition to tertiary level mathematics education lies in the substantial mismatch between the nature of entrants’ pre-tertiary mathematical experiences and subsequent tertiary level mathematics-intensive courses. This paper reports on an Irish study that focuses on the pre-tertiary mathematics experience of entering students and examined its influence on students’ ability to make a successful transition to tertiary level mathematics. Brousseau's ‘didactical contract’ is used as an intellectual tool to uncover and describe the contract that exists in two case mathematics classrooms in Irish upper secondary schools (Senior Cycle). Although the authors are professional mathematics educators and well informed about classroom practice in Ireland, they were genuinely surprised by the very restrictive nature of this contract and the damaging consequences for students’ future mathematical education.  相似文献   

7.
The study explores the nature of students’ conceptual understanding of calculus. Twenty students of engineering were asked to reflect in writing on the meaning of the concepts of limit and integral. A sub-sample of four students was selected for subsequent interviews, which explored in detail the students’ understandings of the two concepts. Intentional analysis of the students’ written and oral accounts revealed that the students were expressing their understanding of limit and integral within an algorithmic context, in which the very ‘operations’ of these concepts were seen as crucial. The students also displayed great confidence in their ability to deal with these concepts. Implications for the development of a conceptual understanding of calculus are discussed, and it is argued that developing understanding within an algorithmic context can be seen as a stepping stone towards a more complete conceptual understanding of calculus.  相似文献   

8.
A number of existing theories and proposals for the meaning and characteristics of ‘play’ are considered before the authors suggest six characteristics of mathematical play, including the idea that it is not confined to childhood. Previous studies provide evidence for relating play to cognitive gain while the place of mathematical play in research activities is illustrated by describing a mathematician's approach to a number investigation from the classroom-The Six Circles. The problem-solving process for the Six Circles and observations of students solving calculator and integration problems are analysed in relation to theories of play and cognitive gain and also considered from the perspective of the students' experience. Piaget's theory for the assimilation and accommodation of new information and Davis's view of play as ‘space to support learning’ are reflected in the authors' rationale for suggesting that open questions and mathematical play provide opportunities for students to develop their own conjectures, with no threat of failure, and provide a foundation for mathematical learning. Some difficulties of implementing a ‘play’ approach in the classroom are discussed and further research questions proposed.  相似文献   

9.
We explore the influence of family on adolescent students' mathematical habitus by investigating the association between students' perceptions of parental influence and their dispositions towards mathematics. A construct measuring ‘perceived parental influence’ was validated using Rasch methodology on data from 563 Cypriot students on ‘core’ and ‘advanced’ mathematics pre-university courses, and was then used to predict students' dispositions towards future study of mathematically-demanding courses at university. In most of the regression models, perceived parental influence was not associated significantly with students' dispositions towards mathematics, when other variables were included in the models. However, further statistical analysis showed that perceived parental influence is mediated by (i) the mathematics course students are studying and (ii) their mathematical inclination. We suggest that family influences on students' dispositions are significantly accounted for by students' prior choice of mathematics course and the family's inculcation of their mathematical inclination; these are important factors influencing university choices.  相似文献   

10.
‘Procedural’ fluency in mathematics is often judged solely on numerical representations. ‘Mathematical’ fluency incorporates explaining and justifying as well as producing correct numerical solutions. To observe mathematical fluency, representations additional to a student’s numerical work should be considered. This paper presents analysis of students’ oral responses. Findings suggested oral responses are important vantage points from which to view fluency – particularly characteristics harder to notice through numerical work such as reasoning. Students’ oral responses were particularly important when students’ written (language) responses were absent/inconsistent. Findings also revealed the importance of everyday language alongside technical terms for observing reasoning as a fluency characteristic. Students used high modality verbs and language features, such as connectives, to explain concepts and justify their thinking. The results of this study purport that to gain a fuller picture of students’ fluency, specifically their explanations or reasoning, students’ oral responses should be analyzed, not simply numerical work.  相似文献   

11.
In this paper we consider data from a study in which students shift from linear to quadratic equations in ways that do not conform to established theoretical frameworks. In solving linear equations, the students did not exhibit the ‘didactic cut’ of Filloy and Rojano (1989) or the subtleties arising from conceiving an equation as a balance (Vlassis, 2002). Instead they used ‘procedural embodiments’, shifting terms around with added ‘rules’ to obtain the correct answer (Lima & Tall, 2008). Faced with quadratic equations, the students learn to apply the formula with little success. The interpretation of this data requires earlier theories to be seen within a more comprehensive framework that places them in an evolving context. We use the developing framework of three worlds of mathematics (Tall, 2004, Tall, 2013), based fundamentally on human perceptions and actions and their consequences, at each stage taking into account the experiences that students have ‘met-before’ (Lima and Tall, 2008, McGowen and Tall, 2010). These experiences may be supportive in new contexts, encouraging pleasurable generalization, or problematic, causing confusion and even mathematical anxiety. We consider how this framework explains and predicts the observed data, how it evolves from earlier theories, and how it gives insights that have both theoretical and practical consequences.  相似文献   

12.
We report the implementation and evaluation of a ‘peer assisted learning’ (PAL) scheme designed to reduce the so-called ‘cooling off’ phenomenon in undergraduate mathematics. ‘Cooling off’ occurs when mathematics undergraduates lose motivation and interest in their studies, despite having previously actively chosen to study it at higher levels. We found that, despite concerns about the novel didactic contract inherent in PAL schemes, a majority of students chose to engage with the scheme, and that the student leaders of the PAL sessions were generally capable of implementing a student-centred pedagogy. Furthermore, we found that students who attended the PAL sessions had higher achievement in their final examinations, even after controlling for their lecture attendance and prior attainment. We conclude by arguing that PAL may provide a useful mechanism for reducing the prevalence of the ‘cooling off’ phenomenon in some – but not all – groups of mathematics students.  相似文献   

13.
Enlarging-shrinking geometrical figures by 13 year-olds is studied during the implementation of proportional geometric tasks in the classroom. Students worked in groups of two using ‘Turtleworlds’, a piece of geometrical construction software which combines symbolic notation, through a programming language, with dynamic manipulation of geometrical objects by dragging on sliders representing variable values. In this paper we study the students’ normalising activity, as they use this kind of dynamic manipulation to modify ‘buggy’ geometrical figures while developing meanings for ratio and proportion. We describe students’ normative actions in terms of four distinct Dynamic Manipulation Schemes (Reconnaissance, Correlation, Testing, Verification). We discuss the potential of dragging for mathematical insight in this particular computational environment, as well as the purposeful nature of the task which sets up possibilities for students to appreciate the utility of proportional relationships.  相似文献   

14.
Birgit Pepin 《ZDM》2011,43(4):535-546
Comparing English and Norwegian pupils’ attitude towards mathematics, in this article I develop a deeper understanding of the factors that may shape and influence ‘pupil attitude towards mathematics’, and argue for it as a socio-cultural construct embedded in and shaped by students’ environment and context in which they learn mathematics. The theoretical framework leans on work by Zan and Di Martino (The Montana Mathematics Enthusiast, Monograph 3, pp. 157–168, 2007) to elicit Norwegian and English pupils’ attitude of mathematics as they experience it in their respective environments. Whilst there were differences which could be seen to be accounted for by differently ‘figured’ environments, there are also many similarities. It was interesting to see that, albeit based on a small statistical sample, in both countries students had a positive attitude towards mathematics in year 7/8, which dropped in year 9, and increased again in years 10/11. This result could be explained and compared with other larger scale studies (e.g. Hodgen et al. in Proceedings of the British Society for Research into Learning Mathematics. 29(3), 2009). The analysis of pupils’ qualitative comments (and classroom observations) suggested seven factors that appeared to influence pupil attitude most, and these had ‘superficial’ commonalities, but the perceptions that appeared to underpin these mentions were different, and could be linked to the environments of learning mathematics in their respective classrooms. In summary, it is claimed that it is not enough to identify the factors that may shape and influence pupil attitude, but more importantly, to study how these are ‘lived’ by pupils, what meanings are made in classrooms and in different contexts, and how the factors interrelate and can be understood.  相似文献   

15.
The purpose of this study is to investigate and compare the effects of activity-based and traditional instructions on students’ conceptual development of certain probability concepts. The study was conducted using a pretest–posttest control group design with 80 seventh graders. A developed ‘Conceptual Development Test’ comprising 12 open-ended questions was administered on both groups of students before and after the intervention. The data were analysed using analysis of covariance, with the pretest as covariate. The results revealed that activity-based instruction (ABI) outperformed the traditional counterpart in the development of probability concepts. Furthermore, ABI was found to contribute students’ conceptual development of the concept of ‘Probability of an Event’ the most, whereas to the concept of ‘Sample Space’ the least. As a consequence, it can be deduced that the designed instructional process was effective in the instruction of probability concepts.  相似文献   

16.
This paper reports a qualitative research that identifies Mexican high school students’ social representations of mathematics. For this purpose, the social representations of ‘mathematics’, ‘learning mathematics’ and ‘teaching mathematics’ were identified in a group of 50 students. Focus group interviews were carried out in order to obtain the data. The constant comparative style was the strategy used for the data analysis because it allowed the categories to emerge from the data. The students’ social representations are: (A) Mathematics is…(1) important for daily life, (2) important for careers and for life, (3) important because it is in everything that surrounds us, (4) a way to solve problems of daily life, (5) calculations and operations with numbers, (6) complex and difficult, (7) exact and (6) a subject that develops thinking skills; (B) To learn mathematics is…(1) to possess knowledge to solve problems, (2) to be able to solve everyday problems, (3) to be able to make calculations and operations, and (4) to think logically to be able to solve problems; and (C) To teach mathematics is…(1) to transmit knowledge, (2) to know to share it, (3) to transmit the reasoning ability, and (4) to show how to solve problems.  相似文献   

17.
Homework is one of students’ opportunities to learn mathematics, but we know little about what students learn from homework. This study employs the instructional triangle and didactic contract to explore how students used the ‘see similar example’ feature in an online homework platform and how that use reflected their learning goals. Findings indicate students used similar examples to troubleshoot, to check if they were on the right track, and to see the form of the answer. Students also sought to unpack the reasoning in solution steps, used solutions as templates for solving their own problems, and sometimes copied answers. One student did a ‘see similar example’ problem for more practice. Students’ goals included completing the homework, maximizing their score, and understanding the content. This research lays groundwork for future work characterizing what students learn from homework and how features that provide students with similar examples help or hinder their learning.  相似文献   

18.
19.
A research method consisting of written tests and individual interviews was introduced to examine first-year university students' understanding of fundamental calculus concepts. Six hundred and thirty students from three South African universities were subjected to the tests pertaining to this study. Several misconceptions underlying students' understanding of calculus concepts were identified. This paper deals mainly with some of the common errors and misconceptions relating to students' understanding of ‘limit of a function’ and ‘continuity of a function at a point’.  相似文献   

20.
Some ‘drag-to-fit’ solutions given by student teachers to three geometric construction problems in a dynamic geometry environment (DGE) are analysed. The responses of a group of experienced mathematics teachers to the question whether or not such solutions can be considered ‘legitimate’ are then discussed. This raises fundamental questions concerning the concept of legitimacy, the relationship between DGEs and Formal Axiomatic Euclidean Geometry, the nature of ‘conceptual tools’ in different geometric environments, and the functions of dragging in DGEs. The authors argue that, if dragging is viewed as a conceptual tool, then certain drag-to-fit solutions, although soft constructions, may still be considered as conceptually legitimate and therefore valid. Finally, some important questions are raised concerning the impact that teachers’ different attitudes towards legitimacy might have on students’ learning through DGEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号