首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An indigenously prepared zinc chloride activated Ipomoea carnea (morning glory), a low-cost and abundant adsorbent, was used for removal of Cu(II) ions from aqueous solutions in a batch adsorption system. The chemical activating agent ZnCl2 was dissolved in deionised water and then added to the adsorbent in two different ratios 1:1 and 1:0.5 adsorbent to activating agent ratio by weight. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, and pH. Activated Ipomoea carnea (AIC) were characterised using scanning electron microscopy (SEM), iodine number and methylene blue number. High iodine numbers indicates development of micro pores with zinc chloride activation. Maximum adsorption was noted within pH range 6.0(±0.05). Adsorption process is fast initially and reaches equilibrium after about 4 hours. The kinetic data were analysed using pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model was found to agree well with the experimental data. Adsorption equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir model represented the sorption process better than the Freundlich model. Based on the Langmuir isotherm, the monolayer adsorption capacity of Cu(II) ions was 7.855 mg?g?1 for AIC (1:1) and 6.934 mg?g?1 for AIC (1:0.5).  相似文献   

2.
This study investigated a new adsorbent prepared from lignin modified organoclay for the removal of Pb2+ and UO2 2+ from aqueous solutions. The characterization of new adsorbent was performed by FT-IR and XRD. Adsorption of Pb2+ and UO2 2+ species in aqueous solution as a function of ion concentration, pH, temperature and time of adsorption was investigated in detail. The adsorption data were analyzed by using the Langmuir, Freundlich and Dubinin-Radushkevich models. The monolayer adsorption capacities of organoclay–lignin were 0.12 mol kg?1 and 0.42 mol kg?1 for Pb2+ and UO2 2+, respectively. The experimental kinetic data were analyzed by using pseudo-second-order kinetic and intra-particle diffusion models. The proposed adsorption mechanism follows a pseudo-second-order kinetic and endothermic because of increasing disorderliness at adsorbate/adsorbent interface.  相似文献   

3.
The removal of orange Telon from aqueous solutions by poly(N-octyl-4-vinylpyridiniumbromide) copolymer was investigated. Batch adsorption experiments were carried out to study the effect of experimental parameters on the orange Telon adsorption equilibrium. The adsorption characteristics of copolymer to ward orange Telon in dilute aqueous solution were followed using UV-Vis spectrophotometry. Adsorption equilibrium was reached within 60 min for 0.03 g of poly(4-vinylpyridine quaternized at 58%. The kinetic of adsorption is best described by a pseudo-second-order model. Results also showed that the equilibrium modeling of orange Telon removal process was described by Langmuir isotherms. The maximum adsorption capacity determined from the Langmuir isotherm was 76.4 mg g? 1. The study of the thermodynamic parameters showed that the adsorption of orange Telon on copolymer is an exothermic process and the randomness decreases at the solid-solution interface during the adsorption of dye on the copolymer.  相似文献   

4.

Highly crosslinked organic–inorganic hybrid polymer poly(cyclotriphosphazene-co-melamine) microspheres (PZM) were synthesized by a simple method. The microspheres was characterized by FTIR, SEM and EDX. It was applied to eliminate thorium(IV) from aqueous solution under various conditions, i.e., pH, initial concentration, dosage and contact time. The experimental data were well-imitated via the pseudo-second-order kinetic model and its adsorption processes comply with the Langmuir isotherm model. Adsorption thermodynamic studies demonstrated that the adsorption process, in essence, was spontaneous and endothermic. Furthermore, the maximum experimental adsorption capacity was 98.6 mg g?1 for initial thorium(IV) concentration 50 mg L?1. When pH?=?0.0, the thorium(IV) removal efficiency reached at 76.9%, which indicates that the adsorbent can also was used in a peracid environment. Adsorption behavior of thorium(IV) onto the microspheres were weakly affected via temperature, implying that adsorption would be done at room temperature.

  相似文献   

5.
The adsorption of uranium (VI) using tetraphenylimidodiphosphinate (Htpip) was studied. Factors of affecting sorption efficiency have been investigated and results showed the adsorption of uranium (VI) was equilibrium at pH 4.5, time 20 min, adsorbent dosage 0.005 g and initial concentration 50 mg L?1 reaching 99.86 mg g?1 of adsorption capacity and 99.86% of removal efficiency. Additionally, the interfering ions studies showed that the adsorbent possessed excellent adsorption selectivity of uranium (VI). The surface morphology of Htpip was investigated by SEM. The adsorption process of uranium (VI) onto Htpip fit the pseudo-second-order kinetic model and the Freundlich isotherm model very well.  相似文献   

6.
Fine powder of Typha latifolia L. root was used for adsorption of copper and zinc ions from buffered and nonbuffered aqueous solutions. The adsorption reached equilibrium in 60 min. During this time, more than 90 % of the adsorption process was completed. The effect of initial pH, initial concentration of metal ion, and contact time was investigated in a batch system at room temperature. The optimum adsorption performance was observed at pH 5.00 and 4.25 for nonbuffered solutions of Cu(II) and Zn(II), respectively, while for buffered solutions it occurred at pH 6.00. The total metal uptake decreased on application of ammonium acetate buffer, from 37.35 to 17.00 mg g?1 and 28.80 to 9.90 mg g?1 for Cu(II) and Zn(II) solutions, respectively, with 100 mg L?1 initial concentration. The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models were used to describe the adsorption kinetics. The experimental data followed the pseudo-second-order kinetic model. The biosorption equilibrium was well described by Langmuir and Freundlich isotherm models.  相似文献   

7.
The removal of Cr(VI) ions from aqueous solution by human hair waste is investigated by using UV–Vis spectrophotometer technique. The morphological analysis of the human hair was also investigated by the scanning electron microscopy, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy. The influence of various physicochemical effective parameters such as pH, ionic strength, adsorbent amount, contact time, initial concentration of metal ion on removal of Cr(VI) ions by human hair process was also studied. The optimum conditions for this adsorption process were obtained at pH = 2 and contact time of 150 min while the highest Cr(VI) uptake is recorded for 0.5 g of the adsorbent per 100 ml of solution. Three isotherms models including Langmuir, Freundlich and Temkin were applied to describe the equilibrium data. It was found that the experimental data were well described by Freundlich isothermal model. The maximum adsorption capacity was found to be 11.64 mg g?1.The thermodynamic study data showed that the adsorption process of Cr(VI) on human hair is an endothermic, spontaneous and physisorption reaction. The kinetics of the adsorption process was studied using three kinetics models including Lagergren-first-order, pseudo-second-order and Elovich model. The obtained data are indicated that the adsorption processes of Cr(VI) over human hair could be described by the pseudo-second-order kinetic model.  相似文献   

8.
A graft copolymerization was performed using free radical initiating process to prepare the poly(methyl acrylate) grafted copolymer from the tapioca cellulose. The desired material is poly(hydroxamic acid) ligand, which is synthesized from poly(methyl acrylate) grafted cellulose using hydroximation reaction. The tapioca cellulose, grafted cellulose and poly(hydroxamic acid) ligand were characterized by Infrared Spectroscopy and Field Emission Scanning Electron Microscope. The adsorption capacity with copper was found to be good, 210 mg g?1 with a faster adsorption rate (t1/2 = 10.5 min). The adsorption capacities for other heavy metal ions were also found to be strong such as Fe3+, Cr3+, Co3+ and Ni2+ were 191, 182, 202 and 173 mg g?1, respectively at pH 6. To predict the adsorption behavior, the heavy metal ions sorption onto ligand were well-fitted with the Langmuir isotherm model (R2 > 0.99), which suggest that the cellulose-based adsorbent i.e., poly(hydroxamic acid) ligand surface is homogenous and monolayer. The reusability was checked by the sorption/desorption process for six cycles and the sorption and extraction efficiency in each cycle was determined. This new adsorbent can be reused in many cycles without any significant loss in its original removal performances.  相似文献   

9.
Uranium (VI)-containing water has been recognized as a potential longer-term radiological health hazard. In this work, the sorptive potential of sunflower straw for U (VI) from aqueous solution was investigated in detail, including the effect of initial solution pH, adsorbent dosage, temperature, contact time and initial U (VI) concentration. A dose of 2.0 g L?1 of sunflower straw in an initial U (VI) concentration of 20 mg L?1 with an initial pH of 5.0 and a contact time of 10 h resulted in the maximum U (VI) uptake (about 6.96 mg g?1) at 298 K. The isotherm adsorption data was modeled best by the nonlinear Langmuir–Freundlich equation. The equilibrium sorption capacity of sunflower straw was observed to be approximately seven times higher than that of coconut-shell activated carbon as 251.52 and 32.37 mg g?1 under optimal conditions, respectively. The positive enthalpy and negative free energy suggested the endothermic and spontaneous nature of sorption, respectively. The kinetic data conformed successfully to the pseudo-second-order equation. Furthermore, energy dispersive X-ray, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that U (VI) adsorption onto sunflower straw was predominantly controlled by ion exchange as well as complexation mechanism. The study revealed that sunflower straw could be exploited for uranium remediation of aqueous streams as a promising adsorbent.  相似文献   

10.
The utilization of diatomite as potential adsorbent to remove malachite green (MG) from aqueous solution was developed. The characterization of the diatomite was evaluated by scanning electron microscope (SEM) and Brurauer Emmerr Teller (BET). The operating variables of pH, diatomite mass, initial MG concentration, and adsorption reaction time were studied. The equilibrium, kinetics, and thermodynamic parameters were investigated as well. It was found that the diatomite was composed of integral and almost circle sieve tray with lots of small pores on it, which afforded the diatomite high specific surface area of 46.09 m2 g?1. The optimum pH and reaction time were 7 and 90 minutes, respectively. The MG removal increased accordingly as the diatomite mass increased. The isotherm results showed that the equilibrium data were fitted to Langmuir model better, indicating the MG adsorption was better characterized by mono-layer. The maximum mono-layer capacity obtained from Langmuir was 23.64 mg g?1 at 25°C. The kinetic studies indicated that experiment data followed pseudo-second-order model better. It also revealed that intraparticle diffusion was not the only rate-controlling step. The thermodynamic results concluded that the adsorption process was endothermic and more favorable at high temperature. Researches confirmed the applicability of diatomite as an efficient adsorbent and low-cost process to remove hazardous materials.  相似文献   

11.
Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were chemically modified with 3-aminopyrazole (MWCNTs-f) and applied as an efficient adsorbent to mercury and arsenic adsorption from aqueous solutions. The adsorbents were characterized by FT-IR, EDX, FE-SEM, TGA, and BET. The effects of pH, adsorbent dose, and initial ions concentration on the adsorption efficiency and the optimum conditions were investigated by central composite design. The optimum conditions were obtained at pH 7.6–7.9, adsorbent dose 20 mg, and initial ions concentration 20 ppm. So the maximum adsorption efficiencies in these conditions were 80.5 and 72.4% for the removal of Hg(II) and As(III) by MWCNTs-f, respectively. The quadratic model was used for the analysis of variance and indicated that adsorption of metal ions strongly depends on pH. Also, the pseudo-second-order model has been achieved from the adsorption kinetic studies. Furthermore, the experimental data were well fitted to the Langmuir isotherm and the maximum adsorption capacities obtained were 112 and 133 mg g?1 for the adsorption of Hg(II) and As(III) by MWCNTs-f, respectively. Moreover, a thermodynamic study revealed that the adsorption reactions were spontaneous and endothermic with the increase in randomness. In addition, a desorption study showed the favorable regeneration ability of MWCNTs-f even after three adsorption–desorption cycles. Therefore, the MWCNTs-f adsorbent has good potential for the removal of Hg(II) and As(III) pollutants from aqueous solutions.  相似文献   

12.
A novel graphene oxide/bentonite composite (GO/bentonite) was synthesized and then characterized through powder X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and energy dispersive spectroscopy. Adsorption achieved equilibrium within 10 min. Moreover, U(VI) adsorption on GO/bentonite was highly dependent on solution pH and independent of ionic strength. These characteristics suggested that inner-sphere surface complexes of U(VI) formed on GO/bentonite. The adsorption of U(VI) from aqueous solution on GO/bentonite was fitted to the pseudo-second-order and Freundlich isotherm models. The maximum sorption capacity of GO/bentonite was 234.19 mg g?1 under neutral pH at 303 K. GO/bentonite is a potentially powerful adsorbent for the efficient removal of U(VI) from aqueous solutions.  相似文献   

13.
The aim of the present study is to investigate the removal of ammonium ions from aqueous solutions using the natural Western Azerbaijan zeolite by utilizing ion exchange process. Batch experimental studies were conducted to evaluate by changing relevant parameters such as pH, dosage of adsorbent, stirring time, initial ammonium concentration, and temperature. The results clearly confirmed that all mentioned parameters have vital affects on removing ammonium ions from wastewater and effluents, so got optimized. Adsorption kinetics and equilibrium data for the removal of ammonium ion were analyzed using Langmuir and Freundlich equations. The Langmuir model fits the equilibrium data better than the Freundlich model. According to the Langmuir equation, the maximum uptake for ammonium ion was 43.47 (mg g?1). Pseudo-first-order and pseudo-second-order models were used to represent the kinetics of the process. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicate that the adsorption process is feasible, spontaneous, and endothermic at 20–50 °C. Based on the experimental results, it can be suggested that the natural Western Azerbaijan zeolite has the potential of application as an efficient adsorbent for the removal of ammonium ions from aqueous solutions, and is suggested for wastewater treatment purposes.  相似文献   

14.
In this paper, the NiS nanoparticles are prepared and characterized by x-ray powder diffraction and scanning electron microscopy. The NiS nanoparticles showed the excellent adsorption properties toward sunset yellow (UA) dye. The effect of solution pH, adsorbent dosage (0.005–0.020 g), contact time (0.5–30 minutes), and initial UA concentration (5–40 mg L?1) on the extent of adsorption was investigated and modeled by artificial neural network. The experimental equilibrium data was analyzed by Langmuir, Freundlich, Tempkin, and D–R isothermal models. It was seen that the data was well presented by Langmuir model with a maximum adsorption capacity of 333.3 mg g?1 at 26°C. Kinetic studies at various adsorbent dosages and initial UA concentrations show that high removal percentage (>90%) was achieved within 15 minutes. The adsorption of UA follows the pseudo-second-order rate model. The experimental data were applied to train the multilayer feed-forward neural network with three inputs and one output with Levenberg–Marquart algorithm and different numbers of neurons in the hidden layer. The minimum mean square error of 0.0003 and determination coefficient of (R2) 0.99 were found.  相似文献   

15.
Nano-crystallite hydroxyapatite (nano-HAp) synthesized from Persian corals was used for removing Bi3+ from acidic aqueous solutions. The effects of initial concentration, adsorbent dosage, contact time and temperature were studied in batch experiments. The sorption of Bi3+ by nano-HAp increased as the initial concentration of bismuth ion increased in the medium. The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to study the kinetics of the sorption processes. The pseudo-second-order kinetic model provided the best correlation (R 2 > 0.999) of the used experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. Various thermodynamic parameters, such as $ \Updelta G^\circ $ , $ \Updelta H^\circ $ and $ \Updelta S^\circ $ were calculated. Thermodynamics of Bi3+ cation sorption onto nano-HAp system pointed at spontaneous and endothermic nature of the process. The maximum Bi3+ adsorbed was found to be 3,333.33 mg g?1. It was found that the sorption of Bi3+ on nano-HAp correlated well (R 2 = 0.979) with the Langmuir equation as compared to Freundlich and Dubinin–Kaganer–Radushkevich (D-K-R) isotherm equations under the concentration range studied. This study indicated that nano-HAp extracted from Persian corals could be used as an efficient adsorbent for removal of Bi3+ from acidic aqueous solution.  相似文献   

16.
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by a low cost in a routine protocol. Subsequently, this novel material characterization and identification are followed by different techniques such as th eBruner–Emmet–Teller (BET) theory, scanning electron microcopy, and transmission electron microscopy analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.798 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of sunset yellow (SY) and methyl orange (MO). Generally, the influence of variables including amount of adsorbent, initial dyes concentration, contact time, temperature on dyes removal percentage has great effect on removal percentage that their influence was optimized. The kinetic of proposed adsorption processes efficiently followed, pseudo-second-order and intra-particle diffusion approach. The equilibrium data of the removal strongly follow the Langmuir monolayer adsorption with high adsorption capacity in a short amount of time. This novel adsorbent by small amount (0.01 g) really is applicable for removal of high amount of both dyes (MO and SY) in short time (<18 minutes). Equilibrium data fitted well with the Langmuir model at all amount of adsorbent, while maximum adsorption capacity for MO 161.29 mg g?1 and for SY 227.27 for 0.005 g of Au-NP-AC.  相似文献   

17.
In this study, an amidoximated chelating ion exchange resin was prepared by poly-acrylonitrile (PAN) grafted potato starch. The adsorbent characterizations such as specific surface area, pore volume, average pore radius, and Fourier transform infrared (FTIR) spectrum of the resin were measured. The effects of pH, adsorbent dosage, contact time, initial concentration of thorium ion, and temperature on adsorption of thorium ion from aqueous solutions were investigated. Four isotherm models including Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin were applied to analyze the equilibrium isotherm data. The results showed that Langmuir and Temkin models had a good agreement with experimental data. The maximum capacity of the adsorbent using the Langmuir isotherm model was 227.27 mg · g?1. The kinetic models like pseudo-first-order, pseudo-second-order, Elovich, and intraparticle were examined to describe the adsorption process. The kinetics of the adsorption process was found to follow the pseudo-second-order kinetic model. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were also calculated using equilibrium constant values at various temperatures (25, 35, 45, 55°C) and the positive value for ΔH° showed an endothermic adsorption process. The study suggests that the prepared adsorbent has promising potential for the removal of thorium from wastewaters.   相似文献   

18.
PVA functionalized with vinylphosphonic acid was prepared as a new adsorbent for uranyl (VI) adsorption from aqueous solutions. The vinylphosphonic acid was cografted onto PVA fibers by preirradiation grafting technique. The adsorbent were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorbent was observed to possess a fibrous structure and was bonded with phosphonic acid groups successfully. The adsorbent was used for the adsorption of low levels uranyl (VI) ions from aqueous solutions. The influence of analytical parameters including pH, adsorption time, amount of adsorbent, metal ion concentration, and temperature were investigated on the recovery of uranyl (VI) ion in aqueous solution. The maximum adsorption capacity (32.1 mg g?1) and fast equilibrium time (30 min) were achieved at pH of 4.5 at room temperature. Thermodynamic parameters (ΔH° = 2.695 kJ mol?1; ΔS° = 31.15 J mol?1 K?1; ΔG° = ?6.748 kJ mol?1) show the adsorption of an exothermic process and spontaneous nature, respectively. The possible coordination mechanism was illustrated. Adsorption and desorption coexist in aqueous solutions and then the system becomes equilibrium.  相似文献   

19.
Adsorption and photo-Fenton processes were used as handy tools to ascertain the capability of natural clays to remove cadmium (Cd) and 2-chlorophenol (2-CP) from aqueous solution. Natural Fe-rich clay collected from Tejera-Esghira in Medenine area, south Tunisia, was used as a catalyst in the heterogeneous photo-Fenton oxidation of 2-CP in aqueous solution. Clay samples were acid activated to improve their adsorptive capacity for the removal of Cd. Experimental results indicated that the adsorption of Cd ions onto natural red clay of Tejera-Esghira followed the pseudo-second-order kinetic model. Langmuir model was found to describe the equilibrium data with the calculated maximum adsorption capacity of 23.59 mg g?1 for acid-activated clay. Photo-Fenton experiments proved high activity of the natural clay catalyst, which was able to completely degrade the phenol present in the treated solution after 30 min and in the presence of ultraviolet light C (UV-C). Total organic carbon and gas chromatography analysis confirmed a 2-CP degradation mechanism toward an almost complete mineralization of the organic compound.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号