首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of triblock copolymers of the type A-B-A were synthesized using tungsten chloride-anchored hydroxyl-terminated polybutadiene (HTPBD) catalyst. Monomers like phenylacetylene (PA), norbornene (NBE), cyclooctadiene (COD), and cyclopentene (CP) were polymerized via metathesis pathway using this catalyst. The efficiency of this anchored catalyst in producing A-B-A triblock copolymers was explored and compared under the same experimental conditions like solvent system and reaction temperature. This anchored catalyst upon reaction with PA produced polyPA-block-polyBD-block-polyPA in high yield and with low polydispersity (pdi) compared to HTPBD. The formation of the triblock copolymers by this method was evinced by NMR, TGA, and GPC data as well as by delinking and inverse addition studies. All the cycloalkenes polymerized via ring-opening metathesis polymerization (ROMP) with the catalyst and yielded triblock copolymers. The mode of synthesis of triblocks could be construed as switching the mechanism of polymerization from radical to olefin metathesis. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2601–2610, 1998  相似文献   

2.
It is established that food waste can be repurposed to extend its lifecycle and decrease its carbon footprint. In this work, SCOBY (symbiotic culture of bacteria and yeast) waste from kombucha tea production has been repurposed as a catalyst support. Copper nanoparticles (Cu NPs) have been embedded in a piece of treated SCOBY via an in-situ method which enabled the catalyst, inCu/t-SCOBY, to be easily recycled. In addition, inCu/t-SCOBY catalyzed the full reduction of 4-nitrophenol in an excess of sodium borohydride (NaBH4) within 20 minutes. After 6 additional catalytic cycles, the catalyst maintained up to 50% of its performance in the first cycle. Characterization of the catalyst has also been done to understand the mechanism of action and interactions occurring between t-SCOBY and Cu NPs. The results of this work clearly present a proof-of-concept in utilizing porous wastes materials such as SCOBY as catalyst supports, allowing metallic NPs to be efficacious and practical heterogenous catalysts.  相似文献   

3.
Stereoselectivity of reductive amination of (R)-1-hydroxy-1-phenylpropan-2-one by methylamine was studied. From the four isomers possible, only two are produced by this reaction. These are marked as (−)-(1R,2S)-ephedrine (desired product) and (+)-(1S,2R)-ephedrine. The reaction stereoselectivity depends both on the type of the catalyst and reaction conditions. The most suitable type is the supported platinum. However, this catalyst rapidly deactivates. With a decreasing activity of Pt catalyst, the stereoselectivity decreases. It is also decreased during the production of the second liquid phase (water) in the reaction mixture.  相似文献   

4.
The catalyst dichlorobis(acetylacetone)zirconium was intercalated into montmorillonite (MT) together with AlEt2Cl as a cocatalyst. Reacting ethylene in the presence of this catalyst yields α‐olefin oligomers with over 80% selectivity. [rac‐Et(Ind)2ZrCl2]/MAO was then added to form a dual functional catalyst system. An MT particle‐dispersed polyethylene composite was prepared by copolymerization of the in‐situ produced oligomers with ethylene using this dual system.  相似文献   

5.
The full details of the asymmetric epoxidation of α,β‐unsaturated esters catalyzed by yttrium complexes with biaryldiol ligands are described. An yttrium–biphenyldiol catalyst, generated from Y(OiPr)3–biphenyldiol ligand–triphenylarsine oxide (1:1:1), is suitable for the epoxidation of various α,β‐unsaturated esters. With this catalyst, β‐aryl α,β‐unsaturated esters gave high enantioselectivities and good yields (≤99 % ee). The reactivity of this catalyst is good, and the catalyst loading could be decreased to as little as 0.5–2 mol % (the turnover number was up to 116), while high enantiomeric excesses were maintained. For β‐alkyl α,β‐unsaturated esters, an yttrium–binol catalyst, generated from Y(OiPr)3–binol ligand–triphenylphosphine oxide (1:1:2), gave the best enantioselectivities (≤97 % ee). The utility of the epoxidation reaction was demonstrated in an efficient synthesis of (?)‐ragaglitazar, a potential antidiabetes agent.  相似文献   

6.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

7.
Silica nanoparticles (SiNPs) were chosen as a solid support material for the immobilization of a new Wilkinson’s‐type catalyst. In a first step, polymer molecules (poly(triphenylphosphine)ethylene (PTPPE); 4‐diphenylphosphine styrene as monomer) were grafted onto the silica nanoparticles by surface‐initiated photoinferter‐mediated polymerization (SI‐PIMP). The catalyst was then created by binding rhodium (Rh) to the polymer side chains, with RhCl3 ? x H2O as a precursor. The triphenylphosphine units and rhodium as RhI provide an environment to form Wilkinson’s catalyst‐like structures. Employing multinuclear (31P, 29Si, and 13C) solid‐state NMR spectroscopy (SSNMR), the structure of the catalyst bound to the polymer and the intermediates of the grafting reaction have been characterized. Finally, first applications of this catalyst in hydrogenation reactions employing para‐enriched hydrogen gas (PHIP experiments) and an assessment of its leaching properties are presented.  相似文献   

8.
In this research, we report a novel synthesis of magnetic β-alanine-functionalized-graphene oxide quantum dots Fe3O4@GOQDs-N-(β-alanine) as a recyclable and eco-friendly heterogeneous nanocatalyst. The catalytic efficiency of these nanosheets was explored as a basic catalyst for a one-pot three-component synthesis of various 1H-pyrazolo[1,2-b]phthalazine-5,10-dione and 2,3-dihydroquinazolin-4(1H)-one derivatives. The reactions proceeded smoothly under mild and green conditions to afford the respected products in excellent yields. The structure of this newly fabricated catalyst was successfully confirmed by different analytical techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, field emission-scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometry, and thermogravimetric analysis. The stability and recyclability of the catalyst were examined by performing the model reaction in six consecutive runs. The recovered catalyst from the first run was directly used for the next runs with no significant loss of catalytic activity.  相似文献   

9.
In this article, an amphiphilic catalyst TEMPO-PEG4000-NHC-Cu(II) [2,2,6,6-tetramethylpiperidine-1-oxyl/polyethylene glycol/N-heterocyclic carbene] complex was synthesized and used as a highly efficient catalyst for one-pot aerobic oxidative synthesis of benzimidazoles from alcohols. The reactions were applicable in water with good yields in the presence of catalyst (5 mol%). Moreover, the catalyst was easily recovered from the reaction mixture and reused with almost consistent activity.  相似文献   

10.

The catalytic activity of an oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles, γ-Fe2O3@[VO(salenac-OH)] in which salenac-OH?=?[9-(2′,4′-dihydroxyphenyl)-5,8-diaza-4-methylnona-2,4,8-trienato](-2), was explored in the oxidation of hydrocarbons with tert-butyl hydroperoxide (TBHP, 70% aqueous solution) as oxidant. High catalytic activity and selectivity were demonstrated by this magnetic nanocatalyst in alkane hydroxylation and alkene epoxidation, and the corresponding products were obtained with good to excellent yields in acetonitrile at 50 °C. Reasonable catalytic activity was presented by this supported catalyst in the epoxidation of linear alkenes under optimal reaction conditions. In addition, alkylbenzene derivatives and cycloalkanes can be oxidized to their corresponding alcohols and ketones with good yields in this catalytic system. It is possible to magnetically separate the γ-Fe2O3@[VO(salenac-OH)] catalyst and reuse it four times without losing the activity significantly. Moreover, the catalyst structure and morphology do not change after recovery, as indicated by comparing scanning electron microscopy (SEM) image, Fourier transform infrared (FT-IR) and diffuse reflectance spectrum (DRS) of the recovered catalyst with those of the fresh catalyst.

  相似文献   

11.
In this paper, a novel catalyst is introduced based on the immobilization of palladium on modified magnetic graphene oxide nanoparticles. The catalyst is characterized by several methods, including transmission electron microscopy, scanning electron microscopy, X‐ray fluorescence, vibrating‐sample magnetometer, Fourier transform‐infrared and dynamic light scattering (DLS) analysis. The activity of the catalyst was investigated in the synthesis of 4(3H)‐quinazolinones via Pd‐catalyzed carbonylation‐cyclization of N‐(2‐bromoaryl) benzimidamides by Mo (CO)6. The Mo (CO)6 is used as a carbon monoxide source for performing the reaction under mild conditions. The catalyst showed good reusability, and no change in activity was observed after 10 cycles of recovery.  相似文献   

12.
The objective of this research work was to investigate the kinetics of esterification of acetic acid with n-butanol through the variation of experimental parameters. The reaction mixture was catalyzed heterogeneously by a sulfonated catalyst in batch mode of operation. The catalyst was prepared from abundantly available agro-waste, Cajanus cajan husk by chemical activation process, which produces a carbon-based solid catalyst with high surface area. The catalyst was characterized by a Brunauer-Emmet-Teller surface analyzer and Fourier transform infrared spectroscopy to know the surface morphology. Process parameters such as contact time, reaction temperature, and catalyst loading, which can influence the extent of conversion of reactants, were studied. Furthermore, the kinetic investigation was also carried out to estimate the kinetic parameters for uncatalyzed and catalyzed reaction using the second-order pseudo-homogeneous (P-H), Eley-Rideal (E-R), and Langmuir-Hinshelwood (LH) kinetic models for this research work. The kinetic parameters such as activation energy, preexponential factor, and the thermodynamic parameters such as enthalpy and entropy were estimated for uncatalyzed and catalyzed reactions using these three models. The process conditions were optimized for catalyzed and uncatalyzed reactions to obtain the maximum product yield by minimizing root mean square error of each experimental data using the MS-excel solver tool. Thus, this study reveals the high potential of an agro-waste, Cajanus cajan husk as raw material for the synthesis of catalyst. The results show that the E-R model is more appropriate for predicting the dynamic data of an esterification reaction, as the forward rate of reaction estimated using the E-R model are more modified than P-H and L-H models.  相似文献   

13.
Mesoporous silica SBA‐15 functionalized with N‐methylpyrrolidonium‐zinc chloride based deep eutectic solvent (DES) is found to be a more efficient and reusable catalyst for a convenient N‐formylation of a variety of amines at room temperature. N‐Formylation of primary, secondary as well as heterocyclic amines have been carried out in good to excellent yields by treatment with formic acid in low loading of DES/SBA‐15 an environmentally benign catalyst for the first time. The DES/SBA‐15 catalyst, which possesses both Brønsted and Lewis acidities as well as an active SBA‐15 support, makes this procedure quite simple, reusable, more convenient and practical. This catalyst was tolerant of a wide range of functional groups, and it can be reused for four runs without obvious deactivation.  相似文献   

14.
A novel nickel catalyst for the reaction of tert-butyl isocyanide insertion was discovered. In this approach, 1,2-bis(diphenylphosphino)ethane (L3) serves as an efficient ligand, thereby allowing the preparation of lactones from (o-bromophenyl)phenylethanone derivatives. It is noteworthy that this is the first example of nickel acting as a metal catalyst in the reactions of tert-butyl isocyanide insertion. The significance of this methodology may draw many chemists’ attention in the field of isocyanide-incorporating reactions.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   

15.
In general, Lewis acid catalysts are metal‐based compounds that owe their reactivity to a low‐lying empty orbital. However, one potential Lewis acid that has received negligible attention as a catalyst is the carbocation. We have demonstrated the potential of the carbocation as a highly powerful Lewis acid catalyst for organic reactions. The stable and easily available triphenylmethyl (trityl) cation was found to be a highly efficient catalyst for the Diels–Alder reaction for a range of substrates. Catalyst loadings as low as 500 ppm, excellent yields, and good endo/exo selectivities were achieved. Furthermore, by changing the electronic properties of the substituents on the tritylium ion, the Lewis acidity of the catalyst could be tuned to control the outcome of the reaction. The ability of this carbocation as a Lewis acid catalyst was also further extended to the Michael reaction.  相似文献   

16.
A novel application in the field of N-isocyaniminotriphenylphosphorane (Ph3PNNC) chemistry has been introduced in this work. A series of substituted isoindolin-1-one ring systems has been successfully synthesized through a novel and efficient multicomponent reaction of methyl 2-formylbenzoate and primary amines in the presence of N-isocyaniminotriphenylphosphorane (Ph3PNNC) as a catalyst. This one-pot three component reaction (3-CR) gives high yield using N-isocyaniminotriphenylphosphorane (Ph3PNNC) as a metal-free catalyst under mild conditions.  相似文献   

17.
Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) with n‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 376–381  相似文献   

18.
Immobilised Mn(salen) catalysts with two different linkages were studied in the asymmetric epoxidation of cis/trans‐β‐methylstyrene using NaClO as oxidant. The immobilised Mn(salen) complexes inside nanopores can lead to different catalytic behaviour compared with that of homogeneous Jacobsen catalyst. The rigidity of the linkage was found to be a key factor affecting the catalytic performance of immobilised catalysts. The immobilised catalyst with a rigid linkage exhibited comparable chemical selectivity, enantioselectivity and cis/trans ratio of product formation to that obtained with homogeneous Jacobsen catalysts. In contrast, the immobilised catalyst with a flexible linkage gave remarkably lower chemical selectivity, enantioselectivity and inverted cis/trans ratio compared with the results obtained with the homogeneous Jacobsen catalyst and the immobilised catalyst with rigid linkage. Thus, for immobilised Mn(salen) catalysts, a rigid linkage connecting active centres to the support is essential to obtain activity and enantioselectivity as high as those obtained in homogeneous systems.  相似文献   

19.
An easily prepared tetraphosphine N,N,N′,N′‐tetra(diphenylphosphinomethyl)‐1,2‐ethylenediamine (1) combined with PdCl2 affords an efficient catalytic system for Suzuki cross‐coupling of aryl and heteroaryl bromides. A high turnover number of 750 000 is obtained with the catalyst loading as low as 1 ppm. This catalyst system exhibits good stability and longevity. In this study, a broad scope of substrates is investigated and satisfactory yields are obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Vanadatesulfuric acid (VSA), as a novel and heterogeneous catalyst, was used for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones) using an aldehyde, urea, or thiourea and an acyclic β-dicarbonyl compound under solvent-free conditions. VSA is prepared via the reaction of sodium metavanadate and chlorosulfonic acid in high purity. The catalyst was characterized by FTIR, X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis. Compared to the classical Biginelli reactions, this method consistently has the advantage of high yields, simple workup, short reaction times, and reusability of the catalyst.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号