首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to compare the performance of an immunoassay screening for synthetic cannabinoids with a newly developed confirmation method using liquid chromatography quadrupole time-of-flight mass spectrometry. The screening included metabolites from JWH-018, JWH-073, and AM-2201. The confirmation included metabolites from AM-2201, JWH-018, JWH-019, JWH-073, JWH-081, JWH-122, JWH-210, JWH-250, JWH-398, MAM-2201, RCS-4, and UR-144. The immunoassay was tested and found to have no cross-reactivity with UR-144 metabolites but considerable cross-reactivity with MAM-2201 and JWH-122 metabolites. Sensitivity and specificity for the immunoassay were evaluated with 87 authentic urine samples and found to be 87 % and 82 %, respectively. With a cutoff at 2 ng/ml, the confirmation showed 80 positive findings in 38 cases. The most common finding was JWH-122 5-OH-pentyl, followed by JWH-018 5-OH-pentyl. There were 9 findings of UR-144 metabolites and 3 of JWH-073 metabolites. In summary, the immunoassay performed well, presenting both high sensitivity and specificity for the synthetic cannabinoids present in the urine samples tested. The rapid exchange of one cannabinoid for another may pose problems for immunoassays as well as for confirmation methods. However, we consider time-of-flight mass spectrometry to be superior since new metabolites can be quickly included and identified.
Figure
Spice metabolites in urine  相似文献   

2.
The methods of gas chromatography/Fourier transform infrared spectroscopy (GC/FTIR) and gas chromatography/infrared spectroscopy/mass spectrometry (GC/IR/MS) are evaluated for their ability to differentiate side chain isomers of amphetamine. It is found that absorption bands from 3000 to 2850 cm-1 and 900 to 650 cm-1 are most useful for differentiating the alkyl amines, while the bands from 1600 to 900 cm-1 are only useful for differentiating primary amines from the other substituted amines. The combination of GC/IR/MS is superior for differentiating these side chain isomers.  相似文献   

3.
This paper presented the applications of liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) and ultra-high-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC QqTOF MS) for the determination of 148 pesticides in fruits and vegetables. Pesticides were extracted from fruits and vegetables using a buffered QuEChERS method. Quantification was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analog as internal standards in an analytical range from 5 to 500 μg/kg. The method performance parameters including overall recovery, intermediate precision, and measurement uncertainty were evaluated according to a statistically designed experiment, i.e., a nested design. For LC/ESI-MS/MS, 95% of the pesticides had recoveries between 81% and 110%; 97% had an intermediate precision ≤20%; and 95% (in fruits) or 93% (in vegetables) showed measurement uncertainty ≤40%. Compared to LC/ESI-MS/MS, UHPLC QqTOF MS showed a relatively poor repeatability and large measurement uncertainty. About 93% (in fruits) or 94% (in vegetables) of the pesticides had recoveries between 81% and 110%; 86% (in fruits) or 90% (in vegetables) had an intermediate precision ≤20%; and 79% (in fruits) or 88% (in vegetables) showed measurement uncertainty ≤40%. LC/ESI-MS/MS proved to be the first choice for quantification or pre-target analysis due to its superior sensitivity and good repeatability. UHPLC QqTOF MS provided accurate mass measurement and isotopic patterns, and was an ideal tool for post-target screening and confirmation.  相似文献   

4.
Analysis of drugs in hair is often used as a routine method to obtain detailed information about drug ingestion. However, few studies have been conducted on deposition of synthetic cannabinoids and metabolites in hair. The first purpose of this study was to establish and validate an analytical method for detection of JWH-018, JWH-073, and their metabolites in hair, by use of UHPLC–MS–MS, for forensic application. The second purpose was to investigate the distribution of synthetic cannabinoids metabolites in hair and the effect of hair pigmentation, by use of an animal model. For this, JWH-073 was chosen as a representative synthetic cannabinoid. Finally, the developed method was applied to hair samples from 18 individuals suspected of synthetic cannabinoids use. JWH-018, JWH-073, and their metabolites were extracted from hair with methanol. The extract was then filtered and analyzed by UHPLC–MS–MS with an electrospray ion source in positive-ionization mode. Validation proved the method was selective, sensitive, accurate, and precise, with acceptable linearity within the calibration ranges. No significant variations were observed when different sources of both human and rat hair were used. The animal study demonstrated that JWH-073 N-COOH M was the major metabolite of JWH-073 in rat hair, and hair pigmentation did not have a significant effect on incorporation of JWH-073 and its metabolites into hair. In the analysis of 18 authentic hair samples, only JWH-018, JWH-018 N-5-OH M, and JWH-073 were detected, with wide variation in concentrations.  相似文献   

5.
In order to have overall chemical material information of Kai‐Xin‐San (KXS), the reliable ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometer (UHPLC–Q‐TOF‐MS) and ultra‐fast liquid chromatography mass spectrometer (UFLC‐MS/MS) methods were developed for the identification and determination of the major constituents in KXS. Moreover, the UHPLC–Q‐TOF‐MS method was also applied to screen for multiple absorbed components in rat plasma after oral administration of KXS. The UHPLC–Q‐TOF‐MS method was achieved on Agilent 6520 Q‐TOF mass and operated in the negative ion mode. Good separation was performed on a ZORBAX Eclipse Plus C18 column with a gradient elution at a flow rate of 0.2 ml/min. A total of 92 compounds in KXS were identified or tentatively characterized based on their exact molecular weights, fragmentation patterns, and literature data. A total of 26 compounds including 23 prototype components and three metabolites were identified in rat plasma after oral administration of KXS. Then, 16 major bioactive constituents were chosen as the benchmark substances to evaluate the quality of KXS. Their quantitative analyses were performed by a triple quadrupole tandem mass spectrometer (MS/MS) operating in multiple‐reaction monitoring mode(MRM). The analysis was completed with a gradient elution at a flow rate of 0.4 ml/min within 35 min. The simple and fast method was validated and showed good linearity, precision, and recovery. Furthermore, the method was successful applied for the determination of 16 compounds in KXS. All results would provide essential data for identification and quality control of active chemical constituents in KXS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Farrerol is a 2,3‐dihydro‐flavonoid isolated from rhododendron. In this study, a sensitive and selective ultra‐high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was developed for the determination of farrerol in rat plasma. Liquid–liquid extraction by ethyl ether was used for sample preparation. Chromatographic separation was achieved on an Agilent UHPLC XDB‐C18 column (2.1 × 100 mm, 1.8 μm) with water and methanol (30:70, v /v) as the mobile phase. An electrospray source was applied and operated in negative ion mode; selection reaction monitoring was used for quantification using target fragment ions m/z 299 → 179 for farrerol and m/z 267 → 252 for internal standard. Calibration plots were linear in the range of 2.88–1440 ng/mL for farrerol in rat plasma. Intra‐ and inter‐day precisions were <11.6%, and the accuracy ranged from −13.9 to 11.9%. The UHPLC–MS/MS method was successfully applied in pharmacokinetics and bioavailability studies of farrerol in rats.  相似文献   

7.
A rapid method has been developed for the determination of the antitumor drug Ifosfamide 3-(2-chloroethyl)-2-(2-chloroethylamino)tetrahydro-2H-1,2,3-oxazaphosphorine-2-oxide in serum based on continuous flow fast atom bombardment (CFFAB) mass spectrometry interfaced to chromatography on a very short reversed-phase HPLC column without use of an internal standard. The detection limits under optimized conditions are in full scan mode 35 ng/mL and with selected ion recording 1.5 ng/mL serum. Since this approach does not allow to detect the most relevant metabolites of the drug, a study has been carried out using electrospray instead of CFFAB MS without changing the chromatographic conditions. Since in electrospray MS no background ions interfere with the analytes, the detection of some of the metabolites becomes feasible. Spectra indicating the possibilities of that combination are given here as well.Dedicated to Professor Dr. Dr. h.c. mult. J.F.K. Huber on the occasion of his 70th birthday  相似文献   

8.
Two mass spectrometers, in parallel, were employed simultaneously for analysis of triacylglycerols in canola oil, for analysis of triolein oxidation products, and for analysis of triacylglycerol positional isomers separated using reversed-phase high-performance liquid chromatography. A triple quadrupole mass spectrometer was interfaced via an atmospheric pressure chemical ionization (APCI) interface to two reversed-phase liquid chromatographic columns in series. An ion trap mass spectrometer was coupled to the same two columns using an electrospray ionization (ESI) interface, with ammonium formate added as electrolyte. Electrospray ionization mass spectrometry (ESI-MS) under these conditions produced abundant ammonium adduct ions from triacylglycerols, which were then fragmented to produce MS/MS spectra and then fragmented further to produce MS/MS/MS spectra. ESI-MS/MS of the ammoniated adduct ions gave product ion mass spectra which were similar to mass spectra obtained by APCI-MS. ESI-MS/MS produced diacylglycerol fragment ions, and additional fragmentation (MS/MS/MS) produced [RCO](+) (acylium) ions, [RCOO+58](+) ions, and other related ions which allowed assignment of individual acyl chain identities. APCI-MS of triacylglycerol oxidation products produced spectra like those reported previously using APCI-MS. APCI-MS/MS produced ions related to individual fatty acid chains. ESI-MS of triacylglycerol oxidation products produced abundant ammonium adduct ions, even for those molecules which previously produced little or no intact molecular ions under APCI-MS conditions. Fragmentation (MS/MS) of the [M+NH(4)](+) ions produced results similar to those obtained by APCI-MS. Further fragmentation (MS/MS/MS) of the diacylglycerol fragments of oxidation products provided information on the oxidized individual fatty acyl chains. ESI-MS and APCI-MS were found to be complementary techniques, which together contributed to a better understanding of the identities of the products formed by oxidation of triacylglycerols.  相似文献   

9.
Huangqi (Astragali Radix), a traditional Chinese herb, is widely used in clinical therapy in China. In addition, an anti‐allergic effect of constituents in Huangqi has been reported in the scientific literature. In the present study, cell membrane chromatography coupled online with UHPLC‐ESI‐MS/MS method was developed to screen, analyze and identify the anti‐allergic components of Huangqi. The Laboratory of Allergic Disease 2 (LAD2) cell was used to establish cell membrane chromatography, which was combined with UHPLC‐ESI‐MS/MS. The coupled system was then used to screen anti‐allergic components from Huangqi. Effects of active components were verified by histamine release assay. A component retained on the LAD2 cell membrane chromatography was identified as formononetin. Bioactivity of formononetin was investigated by histamine release assay in LAD2 cells, and it was found that formononetin could inhibit histamine release in a dose‐dependent manner from 1 to 100 μm . The LAD2 cell membrane chromatography online with UHPLC‐ESI‐MS/MS method is an effective technique for screening the anti‐allergic components of Huangqi.  相似文献   

10.
The separation and characterization of the unknown degradation product of second‐generation antipsychotic drug ziprasidone are essential for defining the genotoxic potential of the compound. The aim of this study was to develop a simple UHPLC method coupled with tandem mass spectrometry (MS/MS) for chemical characterization of an unknown degradant, and the separation and quantification of ziprasidone and its five main impurities (I–V) in the raw material and pharmaceuticals. Chromatographic conditions were optimized by experimental design. The MS/MS fragmentation conditions were optimized individually for each compound in order to obtain both specific fragments and high signal intensity. A rapid and sensitive UHPLC–MS/MS method was developed. All seven analytes were eluted within the 7 min run time. The best separation was obtained on the Acquity UPLC BEH C18 (50 × 2.1 mm × 1.7 μm) column in gradient mode with ammonium‐formate buffer (10 mm ; pH 4.7) and acetonitrile as mobile phase, with the flow rate of 0.3 mL min?1 and at the column temperature of 30°C. The new UHPLC–MS/MS method was fully validated and all validation parameters were confirmed. The fragmentation pathways and chemical characterization of an unknown degradant were proposed and it was confirmed that there are no structural alerts concerning genotoxicity.  相似文献   

11.
Summary Techniques and applications of analytical instruments combining a chromatographic technique, including liquid chromatography and supercritical fluid chromatography, with mass spectrometry (LC/MS and SFC/MS), that have appeared over the past five years, are reviewed and discussed. It is shown that still many different methods co-exist and have both specific advantages and limitations. SFC/MS appears easier to run for many compounds so far analysed by conventional LC/MS methods. On the other hand, new LC/MS methods that use fast atom bombardment or electrospray ionization have the greater potential for the investigation of polar biopolymers.  相似文献   

12.
Two new ultra-high performance liquid chromatography (UHPLC) methods for analyzing 21 selected antivirals and their metabolites were optimized, including sample preparation step, LC separation conditions, and tandem mass spectrometry detection. Micro-solid phase extraction in pipette tips was used to extract antivirals from the biological material of Hanks balanced salt medium of pH 7.4 and 6.5. These media were used in experiments to evaluate the membrane transport of antiviral drugs. Challenging diversity of physicochemical properties was overcome using combined sorbent composed of C18 and ion exchange moiety, which finally allowed to cover the whole range of tested antivirals. For separation, reversed-phase (RP) chromatography and hydrophilic interaction liquid chromatography (HILIC), were optimized using extensive screening of stationary and mobile phase combinations. Optimized RP-UHPLC separation was carried out using BEH Shield RP18 stationary phase and gradient elution with 25 mmol/L formic acid in acetonitrile and in water. HILIC separation was accomplished with a Cortecs HILIC column and gradient elution with 25 mmol/L ammonium formate pH 3 and acetonitrile. Tandem mass spectrometry (MS/MS) conditions were optimized in both chromatographic modes, but obtained results revealed only a little difference in parameters of capillary voltage and cone voltage. While RP-UHPLC-MS/MS exhibited superior separation selectivity, HILIC-UHPLC-MS/MS has shown substantially higher sensitivity of two orders of magnitude for many compounds. Method validation results indicated that HILIC mode was more suitable for multianalyte methods. Despite better separation selectivity achieved in RP-UHPLC-MS/MS, the matrix effects were noticed while using both chromatographic modes leading to signal enhancement in RP and signal suppression in HILIC.  相似文献   

13.
A simple approach for studying and identifying matrix effect is described. This method for the determination of matrix effect combines the advantages of two most popular traditional methods while eliminating their disadvantages. A postcolumn infusion system was used to observe the MS signal alterations of synthetic cannabinoids: UR-144, XLR-11 and STS-135. Protein precipitation, liquid–liquid extraction and solid phase extraction sample preparation methods were tested. The results of the experiments showed that the discussed method of matrix effect estimation can have practical application in the development of analytical methods. The comparison of the normalized matrix effect profiles can be done even for data obtained over time. Obtained results also indicated that matrix effect was highly dependent on sample preparation. Although similar structure, significant differences were observed for different synthetic cannabinoids.  相似文献   

14.
Ultrahigh-performance liquid chromatography coupled with high-mass-accuracy tandem mass spectrometry (UHPLC–MS–MS) has been used for elucidation of the structures of oxidation products of atorvastatin (AT), one of the most popular commercially available drugs. The purpose of the study was identification of AT metabolites in rat hepatocytes and comparison with electrochemically generated oxidation products. AT was incubated with rat hepatocytes for 24 h. Electrochemical oxidation of AT was performed by use of a three-electrode off-line system with a glassy carbon working electrode. Three supporting electrolytes (0.1 mol L?1 H2SO4, 0.1 mol L?1 HCl, and 0.1 mol L?1 NaCl) were tested, and dependence on pH was also investigated. AT undergoes oxidation by a single irreversible process at approximately +1.0 V vs. Ag/AgCl electrode. The results obtained revealed a simple and relatively fast way of determining the type of oxidation and its position, on the basis of characteristic neutral losses (NLs) and fragment ions. Unfortunately, different products were obtained by electrochemical oxidation and biotransformation of AT. High-mass-accuracy measurement combined with different UHPLC–MS–MS scans, for example reconstructed ion-current chromatograms, constant neutral loss chromatograms, or exact mass filtering, enable rapid identification of drug-related compounds. β-Oxidation, aromatic hydroxylation of the phenylaminocarbonyl group, sulfation, AT lactone and glycol formation were observed in rat biotransformation samples. In contrast, a variety of oxidation reactions on the conjugated skeleton of isopropyl substituent of AT were identified as products of electrolysis.
Figure
Chemical structure of atorvastatin (AT) composed of four main parts assigned as A, B, C and D including the list of identified oxidation reactions for both electrochemical and in vitro experiments  相似文献   

15.
Mang‐Guo‐Zhi‐Ke tablets (MGZKTs) is an effective Chinese patent medicine. It contains mango leaf extract as the main raw material and the antihistamine drug, chlorpheniramine maleate is included in the formulation. However, its pharmacokinetic effect is rarely reported. A highly sensitive, reliable and rapid high‐throughput method using ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC‐MS/MS) was used to simultaneously determine kaempferol, quercetin, mangiferin, p‐hydroxybenzoic acid, gallic acid and chlorpheniramine maleate in rat plasma after oral administration of MGZKTs. The method was successfully developed and fully validated to investigate the pharmacokinetics of MGZKTs. Chloramphenicol and clarithromycin were used as internal standards (IS). A practicable protein precipitation procedure with methanol was adopted for sample preparation. The samples were separated on an Acquity UHPLC Syncronis C18 column (100 × 2.1 mm, 1.7 μm) using 0.1% formic acid–acetonitrile as the mobile phase. The flow rate was set at 0.4 mL/min. The obtained calibration curves were linear in the concentration range of ~1–1000 ng/mL for plasma (r > 0.99). Method validation results met the criteria reported in the US Food and Drug Administration guidelines. Quercetin, p‐hydroxybenzoic acid and kaempferol were absorbed rapidly and reached the peak concentration between 0.16 and 0.25 h. This validated that the UHPLC‐MS/MS method was successfully applied to study the pharmacokinetic parameters of the six compounds in rat plasma after oral administration of MGZKTs. This evidence will be useful for the clinical rational use of Mang‐Guo‐Zhi‐Ke tablets.  相似文献   

16.
A volumetric microsampling (VAMS) device (20 μl) was evaluated and validated for the analysis of γ-hydroxybutyric acid (GHB) in venous blood using a simple ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method. GHB was extracted from VAMS device by acetonitrile, after a re-hydration step in a temperature-controlled ultrasonic bath at 60°C for 10 min. Chromatographic analysis was carried out on a Kinetex C18 column using 0.1% formic acid in water and acetonitrile as binary gradient mobile phase (from 5 to 95% of acetonitrile from 1 to 2.5 min) at a flow rate of 0.3 ml/min. The VAMS method was fully validated according to current guidelines with satisfactory results in terms of linearity, selectivity, precision, absolute recovery, matrix effect and stability. The linearity was determined from 0.5 to 200 μg/ml and the lower limit of quantitation was 0.5 μg/ml. The novel VAMS–UHPLC–MS/MS method was successfully compared with plasma-based method in a GHB-treated patient as a proof of concept.  相似文献   

17.
A sensitive ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was established to analyze furanodienone in rat plasma. In the process of chromatographic separation, selected reaction monitoring transitions for furanodienone and patchouli alcohol (internal standard, IS) were m/z 231.1 → 83.2 and m/z 205.1 → 95.1, respectively. Great linearity of furanodienone in plasma samples was found in the corresponding concentration range (r > 0.995). Intra- and inter-day precisions (RSD, %) were <11.3% in plasma, and the accuracy (RE, %) was within ±10.7%. This method was used to the furanodienone study on rat pharmacokinetics after a single oral dose of 10 mg/kg of furanodiene. The results indicated that the maximum observed plasma concentration was 52.4 ± 19.1 ng/ml at 1.2 ± 0.7 h with an elimination half-life of 2.2 ± 0.7 h. The obtained data indicated that furanodienone could be moderately distributed and eliminated.  相似文献   

18.
Nowadays, in forensic laboratories, heroin profiling is frequently carried out by gas chromatography coupled with mass spectrometry (GC-MS). This analytical technique is well established, provides good sensitivity and reproducibility, and allows the use of large databases. Despite those benefits, recently introduced analytical techniques, such as ultra-high-pressure liquid chromatography (UHPLC), could offer better chromatographic performance, which needs to be considered to increase the analysis throughput for heroin profiling. With the latter, chromatographic conditions were optimized through commercial modeling software and two atmospheric pressure ionization sources were evaluated. Data obtained from UHPLC–MS/MS were thus transferred, thanks to mathematical models to mimic GC-MS data. A calibration and a validation set of representative heroin samples were selected among the database to establish a transfer methodology and assess the models’ abilities to transfer using principal component analysis and hierarchical classification analysis. These abilities were evaluated by computing the frequency of successful classification of UHPLC–MS/MS data among GC-MS database. Seven mathematical models were tested to adjust UHPLC–MS/MS data to GC-MS data. A simplified mathematical model was finally selected and offered a frequency of successful transfer equal to 95%.  相似文献   

19.
Cintrón JM  Colón LA 《The Analyst》2002,127(6):701-704
A simple one-step process was used to synthesize uniform, spherical organosilica nano-particles containing octadecyl moieties. These nano-particles, having a diameter of 670 nm, were slurry packed into fused-silica capillary tubes of 50 microm internal diameter and tested for use in ultrahigh-pressure liquid chromatography (UHPLC) at inlet pressures of about 50,000 psi (approximately 3,500 bar), providing for the use of HPLC with nano-particle packed columns. The retention characteristics of a column packed with the organo-nano-particles were shown to be stable under acidic (pH < 1) and basic (pH > 11) conditions. Fast analysis times and relatively high separation efficiencies (approximately 500,000 plates m(-1)) were obtained under the conditions used.  相似文献   

20.
This paper presents the applications of LC-electrospray ionization (ESI)/MS/MS and ultra-HPLC (UHPLC)/ESI quadrupole (Qq)-time-of-flight (TOF) MS for the determination of 141 pesticides in tea. Pesticides were extracted and cleaned up from tea with a modified quick, easy, cheap, effective, rugged, and safe method using graphitized carbon black and primary-secondary amine sorbents. Quantification was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analog as internal standards in an analytical range from 5 to 500 microg/kg. The LC/ESI-MS/MS served as a reliable tool to quantify the pesticides due to its superior sensitivity and good repeatability. Its method performance characteristics that include overall recovery, intermediate precision, and measurement uncertainty were evaluated according to a statistically designed experiment, i.e., a nested design. About 87% of the pesticides had recoveries between 81 and 110%; 94% had an intermediate precision < or = 20%; and 90% showed measurement uncertainty < or = 40%. About 92% of the pesticides were able to be detected at 5 microg/kg with an S/N > or = 3. The UHPLC/Qq-TOF-MS showed much less sensitivity and poorer repeatability compared to the LC/ESI-MS/MS, and, therefore, it was primarily used for confirmatory purposes based on the accurate mass measurement and isotopic patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号