首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Physicochemical studies on the interaction of cationic surfactants dodecyltrimethylammonium bromide (DTAB), N-dodecyl-N-2-hydroxyethyl-N,N-dimethylammonium bromide (C12HDAB), and N-dodecyl-N,N-2-dihydroxyethyl-N-methyl ammonium bromide (C12DHAB) with bovine serum albumin (BSA) were performed by fluorimetry, circular dichroism (CD) spectroscopy, dynamic light scattering, and ξ-potential measurements. The quenching efficiency of the intrinsic fluorescence of BSA and the interaction strength with BSA increased with increasing numbers of hydroxyethyl constituents in the head group. In each of the surfactant/BSA systems studied, the specific binding site was Trp-213 and the hydrophobic interaction was predominant while a contribution of the hydrogen bond was also observed in the presence of hydroxyethyl.  相似文献   

2.
Mixed micellization behavior of dimeric cationic surfactant ethanediyl-1,2-bis (dimethyldodecylammonium bromide) (12-2-12) with a series of monomeric cationic surfactants dodecyltrimethyl ammonium bromide (DTAB), tetradecyltrimethyl ammonium bromide (TTAB), and cetyltrimethyl ammonium bromide (CTAB) has been studied in aqueous and aqueous polyvinylpyrrolidone (PVP) solutions at 298.15, 308.15, and 318.15 K, respectively, using conductometric method. Various thermodynamic parameters like mixed micelle concentration (Cm), micelle mole fraction (X1), interaction parameter (β), and free energy of mixing (ΔGex) of the mixed systems have been determined and analyzed using Rubingh's regular solution theory. The results indicate that in aqueous solutions the binary mixtures of 12-2-12 with DTAB/TTAB behave nonideally with mutual synergism whereas that with CTAB shows almost ideal behavior at 298.15 K. At 318.15 K, all these binary mixtures exhibit antagonistic behavior. The effect of variation in chain length of alkyltrimethyl ammonium bromide surfactants on the interactions with 12-2-12 have also been evaluated and discussed.  相似文献   

3.
The interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.   相似文献   

4.
5.
The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene)(E39B18) with anionic surfactant sodium dodecyl sulphate(SDS) and cationic surfactant hexadecyltrimethylammonium bromide(CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration(CMC) and thereby the free energy of micellization(△Gmic),free energy of adsorption(△Gads),surface excess concentration(Γ) and minimum area per molecule(A).Conductivity measurements were used to determine the critical micelle concentration(CMC),critical aggregation concentration(CAC),polymer saturation point(PSP),degree of ionization(α) and counter ion binding(β). Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks(I1/I3) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number(N),number of binding sites(n) and free energy of binding (△Gb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.  相似文献   

6.
Abstract

The interaction between anionic dyes [Reactive Orange 122 (R.O 122), Reactive Blue 19 (R.B 19), Reactive Violet 5 (R.V 5) and Acid Green 20 (A.G 20)] with cationic surfactant cetyltrimethylammoniun bromide (CTAB) has been investigated by spectrophotometry and conductance technique. The used dyes are characterized by tautomeric behavior which affects the mechanism of the interaction. Various parameters such as dye structure, surfactant composition, solvent composition, temperature and pH of the medium were studied. The spectral data were applied for calculating the binding constant between dye and surfactant (Kb), fraction of micellization (?mic), and standard free energy change of binding (ΔG°b) in 0,10,20 and 30 v/v % acetonitile (AN). Conductance technique was constructed to estimate the ion pairing constant (Ka) at different temperatures and v/v % AN. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) for ion pair formation were evaluated. The role of hydrophobic and electrostatic effect on dye-surfactant interaction was discussed.  相似文献   

7.
Rate constants for the hydrolysis reaction of phosphate (paraoxon) and thiophosphate (parathion, fenitrothion) esters by oximate (pyridinealdoxime 2‐PyOx and 4‐PyOx) and its functionalized pyridinium surfactants 4‐(hydroxyimino) methyl)‐1‐alkylpyridinium bromide ions (alkyl = CnH2n+1, n = 10, 12, 14, 16) have been measured kinetically at pH 9.5 and 27°C in micellar media of cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB). Acid dissociation constant, pKa, of oximes has also been determined by spectrophotometric, kinetic, and potentiometric methods. The rate acceleration effects of cationic micelles have been explored. Cationic micelles of the pyridinium head group (CPB) showed a large catalytic effect than the ammonium head group (CTAB). The effects of pH, oximate concentration, and surfactants have been discussed.  相似文献   

8.
本文合成并表征了三种不同烷基链长度的季铵盐型阳离子表面活性剂:N-十二烷基-N-(2-羟乙基)-N,N-二甲基溴化铵(DHDAB)、N-十四烷基-N-(2-羟乙基)-N,N-二甲基溴化铵(THDAB)、N-十六烷基-N-(2-羟乙基)-N,N-二甲基溴化铵(CHDAB)。采用荧光光谱法、紫外-可见光谱法、动态光散射法和等温滴定量热法对三种表面活性剂与牛血清白蛋白(BSA)的相互作用进行研究。荧光光谱研究表明,三种表面活性剂主要与BSA分子内的色氨酸残基发生相互作用,导致蛋白质的构象发生变化,且表面活性剂烷基链越长,与BSA的相互作用就越强。BSA荧光猝灭的主要原因是静态猝灭,紫外光谱实验同样验证了静态猝灭的存在。等温滴定量热法结果表明低浓度的表面活性剂与BSA主要发生静电作用和疏水作用而放热。动态光散射结果表明高浓度的表面活性剂会使BSA结构被破坏。本文揭示了表面活性剂与BSA相互作用的机理,为表面活性剂的广泛应用提供了理论基础。  相似文献   

9.
The kinetics of hydrolysis of p‐nitrophenyl acetate catalyzed by α‐chymotrypsin (α‐CT) has been studied in the presence of several cationic surfactants having different head groups maintaining the dodecyl hydrophobic residue and bromide counterion. The enzyme activity was tested in the presence of dodecyl trimethylammonium bromide (DTAB), dodecylpyridinium bromide (DPB), dodecyldimethylethanolammonium bromide (DDMEAB), dodecyldiethylethanolammonium bromide (DDEEAB), benzyldimethyldodecylammonium bromide (BDDAB), and dodecyltriphenylphosphonium bromide (DTPB) surfactants. The extent of superactivity depends upon head groups of surfactants. The activity of α‐CT depends on the surfactant concentration and it varies with the surfactant head group dimensions (DTPB > DDEEAB > DTAB > BDDAB > DDMEAB > DPB). For all surfactants, DTPB exhibits highest superactivity. The effects of surfactants on the apparent kinetic parameters like Michaelis constant Km and the catalytic constant kcat have been determined. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 377–381, 2009  相似文献   

10.
The interactions of the phenolic acids cinnamic acid (CNA), ferulic acid (FA), caffeic acid (CA) and chlorogenic acid (CLA) with bovine serum albumin (BSA) were investigated and compared using affinity capillary electrophoresis (ACE) and the fluorescence quenching methods. ACE gives binding constants (K b) and thermodynamic parameters. The thermodynamic parameters show that each of four phenolic acids bind to BSA mainly by hydrogen bonds, electrostatic and hydrophobic interactions. The fluorescence quenching method provided quenching constant K sv, binding site number n and K b. The fluorescence results indicate that BSA fluorescence quenching is mainly a static quenching process. The binding constants (K b) of CNA, FA, CA and CLA were from 2.52×104 to 7.90×104 L⋅mol−1 from ACE experiments and 1.19×104 to 5.21×104 L⋅mol−1 from fluorescence, their increase corresponded to the increase in the number of hydroxyl groups. These results imply that molecular structure and the number of hydroxyl groups of phenolic acids play act key roles in the affinity of natural phenolic acids towards BSA.  相似文献   

11.

Abstract  

The interaction of cobalt(II)-glutathione (CoGSH) with deoxyribonucleic acid (DNA) has been studied by UV–vis, fluorescence, circular dichroism (CD), thin-film infrared (IR), and viscometric techniques. From the UV-spectroscopic method, binding constant (K b) was determined and was found to be 2.3 × 106 M−1. In fluorimetric analysis, the quenching of fluorescence intensity of DNA bound to ethidium bromide (EB) was investigated. The Stern–Volmer quenching constant (K sv) was also estimated from this study and was found to be 2.8 × 106 M−1at 37 °C. The solution CD spectra of DNA and DNA–CoGSH indicate that in each case, DNA exists in the ‘B’ conformation and suggested an intercalative binding mode. Thin-film IR data also reveal that DNA attains the ‘B’ family of conformations after interaction with CoGSH complex. The increase in DNA viscosity in the presence of CoGSH complexes is attributed to the lengthening of DNA helix due to intercalation.  相似文献   

12.
α‐Chymotrypsin (α‐CT) activity was measured in aqueous buffer with the following alkyltriphenylphosphonium bromide surfactants in the series cetyl, tetradecyl, and dodecyl as a tail length. For the sake of comparison with mixed micellar investigation on activity of α‐CT, cationic cetyltriphenylphosphonium bromide (CTPB) and nonionic surfactant Triton X‐100, Brij‐56, Brij‐35, Tween 20, and Igepal Co‐210 have been used. The p‐nitrophenyl acetate (PNPA) hydrolysis rate was determined at the surfactant concentration of both cationic and mixed micellar systems by a UV–vis spectrophotometer. The catalytic reaction follows the Michaelis–Menten mechanism, and the catalytic efficiency (kcat/KM) was evaluated for both homogeneous and mixed‐micellar media. The maximum catalytic efficiency was observed at 5 mM concentration of CTPB, but the highest catalytic efficiency, 572 M?1 s?1, was measured in the presence of mixed micellar (7.5 mM CTPB + 2.5 mM Tween‐20). The fluorescence (FL) spectra showed the differences of α‐CT conformations in the presence of cationic surfactants. The FL results suggest that the influence of cationic surfactant on proteolysis arises from the interaction with the α‐CT. The binding constant, ksv, of α‐CT with cationic aggregates was determined in the buffer using the Stern–Volmer equation by the fluorescence spectroscopic approach.  相似文献   

13.
An anionic/cationic mixed surfactant aqueous system of surfactin and cetyl trimethyl ammonium bromide (CTAB) at different molar ratios was studied by surface tension and fluorescence methods (pH 8.0). Various parameters that included critical micelle concentration (cmc), micellar composition (X 1), and interaction parameter (β m) as well as thermodynamic properties of mixed micelles were determined. The β m was found to be negative and the mixed system was found to have much lower cmc than pure surfactant systems. There exits synergism between anionic surfactin and cationic CTAB surfactants. The degree of participation of surfactin in the formation of mixed micelle changes with mixing ratio of the two surfactants. The results of aggregation number, fluorescence anisotropy, and viscosity indicate that more packed and larger aggregates were formed from mixed surfactants than unmixed, and the mixed system may be able to form vesicle spontaneously at high molar fraction of surfactin.  相似文献   

14.
Three cationic porphyrin-polypyridyl ruthenium(II) hybrids, differing in the planar areas of the polypyridyl moieties, were synthesized and their interactions with DNA investigated using absorption and fluorescence titration, induced circular dichroism spectra, thermal DNA denaturation measurements, as well as surface-enhanced Raman spectroscopy. Ethidium bromide competition experiments determined the binding affinity constants (Kb) of these compounds for CT DNA. DNA photocleavage experiments indicated that these hybrids have a broader cleaving wavelength range than traditional drugs and 1O2 is the reactive species responsible for the cleavage. The proper planar area was proved to be responsible for the larger Kb and higher DNA photocleavage efficiency.  相似文献   

15.
 The surfactant effect on the lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups was examined in terms of molecular interactions between the polyphosphazenes and surfactants including various anionic, cationic, and nonionic surfactants in aqueous solution. Most of the anionic and cationic surfactants increased the LCST of the polymers: the LCST increased more sharply with increasing length and hydrophobicity of the hydrophobic part of the surfactant molecule. The ΔLCSTs (T 0.03M − T 0M), the change in the LCST by addition of 0 and 0.03 M sodium dodecyl sulfate (SDS), were found to be 7.0 and 14.5 °C for the polymers bearing ethyl esters of glycine and aspartic acid, respectively. The LCST increase of poly(organophosphazene) having a more hydrophobic aspartic acid ethyl ester was 2 times larger compared with that of the polymer having glycine ethyl ester as a side group. The binding behavior of SDS to the polymer bearing glycine ethyl ester as a hydrophobic group was explained from the results of titration of the polymer solutions containing SDS with tetrapropylammonium bromide. Graphic models for the molecular interactions of polymer/surfactant and polymer/surfactant/salt in aqueous solutions were proposed. Received: 17 February 2000/Accepted: 25 April 2000  相似文献   

16.
Abstract  The interaction of cobalt(II)-glutathione (CoGSH) with deoxyribonucleic acid (DNA) has been studied by UV–vis, fluorescence, circular dichroism (CD), thin-film infrared (IR), and viscometric techniques. From the UV-spectroscopic method, binding constant (K b) was determined and was found to be 2.3 × 106 M−1. In fluorimetric analysis, the quenching of fluorescence intensity of DNA bound to ethidium bromide (EB) was investigated. The Stern–Volmer quenching constant (K sv) was also estimated from this study and was found to be 2.8 × 106 M−1at 37 °C. The solution CD spectra of DNA and DNA–CoGSH indicate that in each case, DNA exists in the ‘B’ conformation and suggested an intercalative binding mode. Thin-film IR data also reveal that DNA attains the ‘B’ family of conformations after interaction with CoGSH complex. The increase in DNA viscosity in the presence of CoGSH complexes is attributed to the lengthening of DNA helix due to intercalation. Graphical Abstract  The spectrophotometric, CD, thin film IR, viscometric and fluorimetric studies on the interaction of CoGSH with DNA indicated an intercalative binding mode with the retention of ‘B’ conformation of DNA.   相似文献   

17.
In this article, we report the removal of a reactive dye, viz. sunset yellow, from the aqueous solution using micellar media of two cationic surfactants, viz. cetyltrimethylammonium bromide and ethyl hexadecyldimethyl ammonium bromide (. The values of rejection coefficient (R%) and permeate flux (J) have been calculated using membranes with different pore sizes, viz. 10,000 (10k) molecular weight cutoff (MWCO) and 30,000 (30k) MWCO at 1.5 bar transmembrane pressure. The membrane of 30k MWCO was found to be more suitable in order to retain the dye molecules incorporated in the micelles.  相似文献   

18.
The aqueous mixed systems of twin tail cationic surfactants didodecyldimethylammonium bromide, ditetradecyldimethylammonium bromide, and dihexadecyldimethylammonium bromide with pluronic L64 have been studied to determine the bulk aggregation and interactional behavior. Various experimental techniques, namely small-angle neutron scattering (SANS), fluorescence, conductivity, and surface tension, have been employed to investigate the mixed micellization. The SANS data analysis has been employed to determine the shapes of different aggregates formed. Pure twin tail cationic surfactants form vesicles whereas the micelles of pure pluronic L64 are spherical. The mixed systems (surfactant + L64) also form spherical micelles, and the spherical shape of mixed micelles is predominantly controlled by pluronic L64. Various interfacial parameters such as surface excess (Γ max), minimum area per molecule (A min), and thermodynamic parameters such as the standard Gibbs free energy of micellization (DGmic0 \Delta G_{{mic}}^{{0}} ), Gibbs free energy of adsorption (DGads0 \Delta G_{{ads}}^{{0}} ), and effective Gibbs free energy (DGeff0 \Delta G_{{eff}}^{{0}} ) have been determined from the surface tension measurements. The results were interpreted on the basis of pseudophase separation model and regular solution theory. The interactions of each surfactant with pluronic L64 are found to be nonideal and antagonistic. The repulsive nature of the interaction is explained on the basis of the changes in the microenvironment of micelles of pluronic L64. Micelles of pluronic L64 are less hydrophobic and contains significant amount of water, and inclusion of hydrophobic alkyl chains of twin tail cationic surfactants disturbs this microenvironment of pluronic L64 micelle.  相似文献   

19.
The α‐chymotrypsin activity was tested in aqueous media with the presence of novel cationic amine–based gemini surfactant, with different spacer chain lengths and head group size, and also compared with the cationic cetyltrimethylammonium bromide (CTAB) and cetyltriphenylphosphonium bromide (CTPB) surfactants and aqueous buffer only. The p‐nitrophenyl acetate (PNPA) hydrolysis rate was monitored in the presence of the surfactant concentration at 30°C. Most of these gemini surfactants gave higher catalytic activity as compared to cationic CTAB and CTPB. The highest superactivity was measured in the presence of gemini 16‐12‐16, [dodecanediyl‐1,12‐bis(cetyldimethylammonium bromide)] surfactant at pH 7.5. The catalytic reaction follows the Michaelis–Menten mechanism. The catalytic rate constants, kcat, show the same profile that the catalytic affinity; KM being enhanced with increasing space chain length. The results are favorable for considering that the amine‐based gemini surfactant influences more than both the aqueous and cationic micellar media.  相似文献   

20.
The interactions between oppositely charged surfactant-polymer systems have been studied using surface tension and conductivity measurements and the dependence of aggregation phenomenon over the polyelectrolyte concentration and chain length of cationic ATAB surfactants, cetyltrimethyl ammonium bromide (CTAB), tetradecyltrimethyl ammonium bromide (TTAB), and dodecyltrimethyl ammonium bromide (DTAB) have been investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolyte at critical aggregation concentration (cac). The cac values of ATAB surfactants in the presence of anionic polyelectrolyte, sodium carboxy methyl cellulose (NaCMC), are considerably lower than their critical micelle concentration (cmc). After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in polyelectrolyte aqueous solution than in pure water. Among the cationic surfactants (i.e., CTAB, TTAB, and DTAB), DTAB was found to have least interaction with NaCMC. Surfactants with longer tail size strongly favor the interaction, indicating the dependence of aggregation phenomenon on the structure, morphology, and tail length of the surfactant.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号