首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many industrial applications of oil-in-water emulsions involve salts containing ions of different valence. The properties of the oil-water interface (e.g., interfacial tension, zeta potential and interfacial shear viscosity) are strongly influenced by the presence of these salts. This work investigates the role of NaCl, CaCl2 and AlCl3 on these properties of the hexane-water interface in presence of a cationic surfactant, viz., hexadecyltrimethylammonium bromide. Addition of salt enhanced the adsorption of surfactant molecules at the hexane-water interface, which increased the interfacial charge density, and consequently, the zeta potential. Interfacial shear viscosity significantly decreased in the presence of salt. The effectiveness of salt at a given concentration was in the sequence: AlCl3 > CaCl2 > NaCl. The hexane-in-water emulsions coarsened with time due to the coalescence of hexane droplets. The increase in droplet size with time was analyzed by a model based on the frequency of rupture of the thin aqueous film. The rate constants for coalescence were determined. The rate of coalescence increased in presence of salt.   相似文献   

2.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams.  相似文献   

3.
For the purpose of studying the potential of a novel nonionic switchable surfactant, 11-ferrocenylundecyl polyoxyethylene ether (FPEG), applied to surfactant-enhanced remediation (SER), the surface properties and micelle solubilization behavior of FPEG were investigated with different inorganic salts. With the addition of inorganic salts (NaCl and CaCl2), the critical micelle concentration (CMC) of FPEG dropped from 15 to 12 and 8 mg·L?1, respectively, due to the salting-out effect on the alkyl chain. Thermodynamic parameters based on the CMCs indicated that micelle formation was an entropy-driven process. Dynamic light scattering measurements verified that these inorganic salts can decrease the hydrodynamic diameters (D h) of the micelles. Solubilization experiments with three typical polycyclic aromatic hydrocarbons (PAHs) demonstrated that the system of FPEG with NaCl shows the highest solubilization ability, and the molar solubilization ratio and micelle–water partition coefficient (K m ) values follow the order pyrene > phenanthrene > acenaphthene. After oxidation, PAHs can be released from the micelles through breaking up of the micelles, and the cumulative release efficiency of pyrene, phenanthrene and acenaphthene are 31.2, 42.8 and 44.6 %; the order of release efficiency is opposite to that of the reduced form for solubilization abilities. All the results suggest that the ferrocene-containing, redox-active surfactant FPEG has the potential to be recycled in SER technology through electrochemistry approaches.  相似文献   

4.
A CO2-switchable polymer surfactant was synthesized with acrylamide (AM) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The changes in conductivity, particle size, and ζ-potential were adopted to illustrate its switchability. The CMC of the surfactant was determined by the break point of the curve of surface tension versus concentration. An oil emulsion with 8 g/L surfactant almost reached the highest stability. The thermodynamic stability of the emulsion decreased sharply upon increase of the temperature. Adding an inorganic salt was hard to affect the emulsion stability because the surfactant is non-ionic. The emulsion could maintain its stability even if the concentration of NaCl was as high as 10 g/L. The emulsion could easily be broken by bubbling CO2. Its dehydration rate was 155 times faster than that without the presence of CO2, and the amount of residual oil in water was only 32.22 ppm, which displayed brilliant performance of de-emulsification.  相似文献   

5.
Suitability of reverse micelles of anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT) and sodium dodecyl sulfate (SDS), cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and nonionic surfactant polyoxyethylene p-t-octylphenol (TritonX-100) in organic solvent isooctane for extraction of soy isoflavone-enriching proteins was investigated. The results showed that the order of combined isoflavone contents was SDS>CTAB>Triton X-100>AOT, while the order of protein recovery was SDS>AOT>TritonX-100>CTAB. As compared with ACN-HCl extraction, the total amount of isoflavones was lower than reverse micellar extraction. Ion strength was one of the important conditions to control extraction of isoflavone-enriching proteins with AOT reversed micelles. For the six salt systems, KNO3, KCl, MgCl2, CaCl2, NaCl, and Na2SO4, extracted fraction of isoflavone-enriching proteins was measured. Salt solutions greatly influenced the extraction efficiency of isoflavones in an order of KNO3>MgCl2>CaCl2>KCl>NaCl>Na2SO4, while protein in an order of MgCl2>CaCl2>NaCl>KNO3>Na2SO4>KCl.  相似文献   

6.
This study was conducted in order to identify the pore-level mechanisms controlling the nanoparticles–surfactant foams flow process and residual oil mobilization in etched glass micro-models. The dominant mechanism of foam propagation and residual oil mobilization in water-wet system was identified as lamellae division and emulsification of oil, respectively. There was inter-bubble trapping of oil and water, lamellae detaching and collapsing of SDS-foam in the presence of oil in water-wet system and in oil-wet system. The dominant mechanisms of nanoparticles–surfactant foam flow and residual oil mobilization in oil-wet system were the generation of pore spanning continuous gas foam. The identified mechanisms were independent of pore geometry. The SiO2-SDS and Al2O3-SDS foams propagate successfully in water-wet and oil-wet systems; foam coalescence was prevented during film stretching due to the adsorption and accumulation of the nanoparticles at the gas–liquid interface of the foam, which increased the films’ interfacial viscoelasticity.  相似文献   

7.
The hydrolysis reaction rate of p‐nitrophenyl benzoate (p‐NPB) has been examined in aqueous buffer media of pH 9.18, containing surfactants, cetyltrimethylammonium bromide (CTAB) and chloride (CTAC), or sodium dodecyl sulfate (SDS) at 35°C. Although the rate constant [log (k /s−1)] of p‐NPB hydrolysis has once decreased slightly below the critical micelle concentration (CMC) value for CTAB and CTAC, it has begun to increase drastically with micellar formation. With increasing concentrations larger than the CMC value, the log (k /s−1) value has reached the optimal value, i.e., a 140‐ and 200‐fold rate acceleration for CTAB and CTAC, respectively, compared to that without a surfactant. Whereas the anionic surfactant, SDS, has caused only a gradual rate deceleration in the whole concentration range (up to 0.03 mol dm−3). Increases in pH of the buffer have resulted in increases of the hydrolysis rate. In the CTAB micellar solution, the remarkably enhanced rate has been retarded significantly by the addition of only 0.10 mol dm−3 bromide salts. The effects of rate retardation caused by the added salts follows in the order of NaBr > Me4NBr > Et4NBr > Pr4NBr > n‐Bu4NBr. In the absence of surfactant, however, the addition of the bromide salts has accelerated the hydrolysis rate, except for the metallic salt of NaBr, with the order of Me4NBr < Et4NBr < Pr4NBr < n‐Bu4NBr. In the CTAC micellar solution, similar rate retardation effects have been observed in the presence of chloride salts (NaCl, Et4NCl, and n‐Bu4NCl). The effects of added salts have been interpreted from the viewpoints of the changes in activity of the OH ion and/or the nucleophilicities of the anions from the added salts.  相似文献   

8.
The rheological properties of heat-induced gels made from β-lactoglobulin variants A, B and C were compared. The relative G' values (elastic moduli) for gels formed in 90 mM NaCl solutions were A = B > C. Conversely, in 30 mM CaCl2 the relative G' values were C > A = B. The differences in rheological properties were due to A and B variants forming less rigid gels in CaCl2 (∼ 7 kPa) than NaCl (∼ 20 kPa), and variant C forming gels of similar rigidity in both salt solutions. It was concluded that genetic variation in β-lactoglobulin changes the effect of salts on gelation but does not cause a universal increase or decrease in gel forming ability.  相似文献   

9.
Several new foaming agent formulations (surfactants and polymers) in the presence of multi-walled carbon nanotube (MWCNT) were developed in 3% salinity (NaCl, 2.4?wt%, CaCl2, 0.6?wt%). The dispersion stability of the MWCNT and the viscosity of the solutions were examined as a prerequisite for reservoir applications. Foam was generated in situ and one-dimensional flow-through tests were performed by co-injecting air and foaming solution either in the presence of MWCNT or at particle-free condition. The pressure drop (Δp) across the sand-pack and the nanoparticles breakthrough were closely monitored. The fluid injection rate, gas fraction, and the effect of MWCNT on foams in porous media were investigated.

Our results reveal that foams stabilized by the selected nanoparticles are capable of generating stronger foams leading to higher apparent Δp. The Δp profile varies with gas fraction, which largely affects the foam texture and quality. Also, the viscosity of foaming agent solutions influences Δp values. Adding MWCNT to the foaming agent solutions appears beneficial to the flooding as surfactants adsorption onto nanoparticle surfaces, which facilitates surfactants partitioning to the G/L interface.

Addition of nanoparticles in the developed foam formulations leads to the formation of high-quality stronger foams in porous media, which could potentially improve the sweep efficiency and increase the oil recovery.  相似文献   

10.
Summary The lipophilicity of aniline and 36 ring-substituted aniline derivatives was determined by reversed-phase thin-layer chromatography using NaCl, KCl, MgCl2, CaCl2, AlCl3 and tetramethyl-ammoniumhydroxide, either adsorbed on the silica surface before impregnation or added to the eluent. In most cases the salts decreased the retention power of silica resulting in enhanced mobility of the aniline derivatives. The monovalent cations had the lowest, while AlCl3 and tetramethylammoniumhydroxide had the highest impact on selectivity. This phenomenon can be explained by the different ion charges. The correlation between the RM values and the partition coefficient between n-octanol: water were in all cases inferior to those obtained in salt-free systems this means that the presence of salts modifies differently the lipophilicity of aniline derivatives.  相似文献   

11.
We produced gels using electrolytic-reduction ion water and magnesium aluminum silicates (smectone®), and evaluated in detail gel properties in the presence of various types of salt (NaCl, KCl, CaCl2, MgCl2, and AlCl3). Each salt was added to deionized-distilled water or electrolytic-reduction ion water, and phase diagrams for the smectone® concentration (2.0–4.0%) were produced. The areas of the three phases of smectone® (gel, sol, and separation) at each salt concentration were expressed as percentages of the total area. As a result, uni- and polyvalent cations (excluding Ca2+ ions) affected the stability of gels produced using electrolytic-reduction ion water, and, particularly, univalent cations (Na+, K+) markedly improved gel stability.Using electrolytic-reduction ion water as a dispersal medium, drug delivery systems (DDS) that can maintain the gelling state can be prepared. Thus, gel preparations with maintained functions or controlled-release transdermal drugs can be obtained.  相似文献   

12.
Herein, we report the micellization and the clouding of a nonionic surfactant, poly(ethylene glycol) t-octylphenyl ether (Triton X-100), in aqueous solutions in the absence and presence of (chloride salt) electrolytes. In the absence and presence of electrolytes, the critical micelle concentration (CMC) of Triton X-100 was measured by surface tension measurements. Upon increasing the temperature as well as the concentration of electrolytes, the CMCs decreased. The surface properties and the thermodynamic parameters of the micellar systems were evaluated. From these evaluated thermodynamic parameters, it was found that in the presence of an electrolyte, the stability of the micellar system is high. The cloud points (CPs) of Triton X-100 were also measured in the absence and presence of metallic ions of electrolytes. Upon the addition of metallic ions of chloride salts (electrolytes), the decrease in CP values was observed and the order was found to be: K+ > Na+ > Li+ > NH+4.  相似文献   

13.
This study was designed to evaluate the emulsifying and rheological properties of acorn protein isolate (API) in different pH mediums (pH 3, 7 and 9) and in the presence of ionic salts (1 M NaCl and 1 M CaCl2). API shows higher solubility in distilled water at pH 7, while at the same pH, a decrease in solubility was observed for API in the presence of CaCl2 (61.30%). A lower emulsifying activity index (EAI), lower stability index (ESI), larger droplet sizes and slight flocculation were observed for API in the presence of salts at different pHs. Importantly, CaCl2 treated samples showed relevantly higher EAI (252.67 m2/g) and ESI (152.67 min) values at all pH as compared to NaCl (221.76 m2/g), (111.82 min), respectively. A significant increase in interfacial protein concentration (4.61 mg/m2) was observed for emulsion at pH 9 with CaCl2, while the major fractions of API were observed in an interfacial layer after SDS-PAGE analysis. All of the emulsion shows shear thinning behavior (τc > 0 and n < 1), while the highest viscosity was observed for emulsion prepared with CaCl2 at pH 3 (11.03 ± 1.62). In conclusion, API, in the presence of ionic salts at acidic, neutral and basic pH, can produce natural emulsions, which could be substitutes for synthetic surfactants for such formulations.  相似文献   

14.
The article describes synthesis of four hydroxyethyl alkylene–double alkyl bromide through substitution of nucleophilic d iethanolamine, 1-bromododecane, and 1,4-dibromobutane. The structure of the new hydroxyl cationic surfactant (HDCS) was characterized by 1H NMR and FTIR spectra. The aqueous solution of HDCS showed critical micelle concentration, i.e., 5.6 × 10?2 mM, and could reduce oil/water interfacial tension to 3.28 × 10?3 mN m?1. The surface tension measurements provided a series of parameters, including critical micelle concentration (CMC), surface tension at the CMC (γCMC), adsorption efficiency (pC20), and effectiveness of surface tension reduction (ΠCMC). In addition, maximum surface excess concentration (Гmax) and minimum surface area/molecule (Amin) at the air/water interface were obtained by the Gibbs adsorption isotherm. The influence of inorganic salts (sodium chloride, calcium chloride) and organic salts (sodium benzoate) on the surface tension of HDCS in aqueous solution was investigated. For wettability alteration measurement, contact angle measurement as a quantitative method was utilized. Meanwhile, foam ability, foam stability, and emulsifying property of the synthesized surfactant were also examined at different concentration. HDCS also had excellent viscosity property.  相似文献   

15.
Foam fluids are widely used in petroleum engineering, but long-standing foam stability problems have limited the effectiveness of their use. The study explores the synergistic effects and influencing factors of SiO2 nanoparticles (SiO2-NPs) with different wettability properties and three different surfactants. The paper investigates the foaming performance of different types of surfactants and analyzes and compares the stability of foam after adding hydrophilic and hydrophobic SiO2-NPs from macroscopic as well as microscopic perspectives, and the effects of temperature and inorganic salts on the stability of mixed solutions. The experimental results show that: 1) hydrophilic nanoparticles can significantly enhance the foam stability of amphoteric surfactants, with a small increase in the foam stability of anionic and cationic surfactants; 2) The concentration of nanoparticles did not have a significant effect on the stability of the cationic surfactants and this conclusion was verified in the experimental results of the surface tension measured below;3) The cationic surfactants showed better temperature resistance at temperatures of 50–90 °C. Both amphoteric surfactant solutions with the addition of hydrophilic SiO2-NPs or hydrophobic SiO2-NPs significantly improved the temperature resistance of the foam at high temperatures. The anionic surfactant solution with hydrophobic SiO2-NPs did not enhance the solution temperature resistance; 4) The surface tension of the surfactant solution gradually increases with increasing concentration of hydrophilic or hydrophobic SiO2-NPs and then levels off; 5) the hydrophilic SiO2-NPs had a significant effect on the salt tolerance of the anionic and amphoteric surfactant solutions. The salt tolerance of cationic surfactant solutions with hydrophobic SiO2-NPs was better than that of surfactants with hydrophilic SiO2-NPs.  相似文献   

16.
The effect of hydrated radii, valency, and concentration of counterions on the coacervation of aqueous petroleum sulfonate solutions and on the solubilization capacity of oil-external and middle-phase microemulsions was investigated. The critical electrolyte concentration (CEC) for coacervation increased with Stokes' hydrated radii of monovalent counterions. The CEC for CaCl2 was much lower than that predicted by either the Stokes' hydrated radii or the ionic strength. For mixed electrolytes containing NaCl and CaCl2, it was concluded from the shift in CEC that 1 mole of CaCl2 is equivalent to 16 to 19 moles of NaCl. The changes in relative concentrations of NaCl and CaCl2 for coacervation exhibited additive behavior. The maximum solubilization of brine in oil-external microemulsions occurred at a specific salt concentration. For mixed electrolytes containing NaCl and CaCl2, the shift in electrolyte concentration for maximum solubilization showed that 1 mole of CaCl2 is equivalent to about 4 moles of NaCl. These results suggest that the equivalence ratio of CaCl2 to NaCl is strikingly different in aqueous solutions and oil-external microemulsions. For solubilization in middle-phase microemulsion containing mixed NaCl and CaCl2, it was concluded from the shift in optimal salinity that 1 mole of CaCl2 is equivalent to about 16 moles of NaCl. Here also the changes in NaCI and CaC12 concentrations showed additive behavior. The equivalence ratio of CaCl2 and NaCl appears to be independent of oil chain length in the present study. As shown by the equivalence ratio of CaCl2 to NaCl, the formation of middlephase microemulsions appears to be similar to coacervation of aqueous surfactant solutions and quite different from the solubilization of water in oil-external microemulsions.  相似文献   

17.
The rheological properties of aqueous suspensions consisting of cationic starch (CS) and positively charged aluminum magnesium hydrotalcite-like compound (HTlc) in the presence of different electrolytes (NaCl, CaCl2 and AlCl3) were investigated. It is found that the network-like structure of pure CS solution is formed by the interaction between CS molecules. Both the equilibrium viscosities and the elastic response of CS solution decrease with the addition of NaCl, CaCl2 and AlCl3. Small amplitude sinusoidal oscillation tests show that a three-dimensional network of the HTlc/CS suspension can be formed through the bridge effect between CS molecules and HTlc particles due to the hydrogen bonding between the ether groups or hydroxyl groups of CS and the hydroxyl groups of HTlc. Both the equilibrium viscosity and dynamic property of the HTlc/CS suspensions indicate that the network-like structural strength of the suspensions increases firstly and then decreases with increasing HTlc content. The equilibrium viscosity and the elastic response of the HTlc/CS suspensions decrease gradually with the addition of NaCl or CaCl2, but decrease firstly then increase and then decrease with increasing AlCl3 concentration, i.e., the structural strength of the HTlc/CS suspensions can be strengthened by the addition of appropriate amount of AlCl3 content.  相似文献   

18.
The adsorption of carboxymethylcellulose (CMC) in the presence or absence of the surfactants: anionic SDS, nonionic Triton X-100 and their mixture SDS/TX-100 from the electrolyte solutions (NaCl, CaCl2) on the alumina surface (Al2O3) was studied. In each measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of Triton X-100 and the largest when the mixture of SDS/Triton X-100 was used. These results are a consequence of formation of complexes between the CMC and the surfactant particles. Moreover, the dependence between the amount of surfactants’ adsorption and the CMC initial concentration was measured. It comes out that the surfactants’ adsorption amount is not dependent on the CMC initial concentration and moreover, it is unchanged in the whole measured concentration range. The influence of kind of electrolyte, its ionic strength as well as pH of a solution on the amount of the CMC adsorption at alumina surface was also measured. The amount of CMC adsorption is larger in the presence of NaCl than in the presence of CaCl2 as the background electrolyte. It is a result of the complexation reaction between Ca2+ ions and the functional groups of CMC belonging to the same macromolecule. As far as the electrolyte ionic strength is concerned the increase of CMC adsorption amount accompanying the increase of electrolyte ionic strength is observed. The reason for that is the ability of electrolyte cations to screen every electrostatic repulsion in the adsorption system. Another observation is that the increase of pH caused the decrease of CMC adsorption. The explanation of this phenomenon is connected with the influence of pH on both dissociation degree of polyelectrolyte and kind and concentration of surface active groups of the adsorbent.  相似文献   

19.
A poly(N-vinylimidazole) (PNVI)—based poly(carboxybetaine) with two methylene groups between the opposite charges was achieved by the nucleophilic addition reaction of the mentioned aminic polymer to the carbon-carbon double bond of acrylic acid (AA). Treatment of poly(carboxybetaine) with concentrated HCl (2 N) for long time leads to the corresponding cationic polyelectrolyte. The poly(carboxybetaine) is soluble in both water and aqueous solutions of salts such as: LiCl, NaCl, NaHCO3, CaCl2, Na2SO4. In water and in the first three salts, poly(carboxybetaine) exhibits a non-polyelectrolyte behaviour (a linear dependence of reduced viscosities on polymer or salt concentration), while in the remaining two salts, a slight polyelectrolyte behaviour is observed. The cationic polyelectrolyte is soluble in water and aqueous solutions of LiCl, NaCl, CaCl2 and NaHCO3, except Na2SO4. It has a polyelectrolyte behaviour in all solutions. Also, the binding trends of the added salts by polymers are discussed.  相似文献   

20.
The influence of the vapors ofn-amyl orn-decyl alcohol on the stability of single thin liquid films, single bubbles, and foam columns was determined. It was found that the presence of surfactant vapors lowered the stability of foams and single foam films. The mechanism of the destabilizing action of the surfactant vapors on wet, dynamic foams under dynamic conditions is discussed. It is shown that the destabilizing action of the surfactant vapors is a further indication that surface elasticity forces are the main factor determining stability of wet, dynamic foams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号