首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The reaction between K3[Mo(CN)8] · H2O and MnCl2 · 4H2O in different reaction conditions have obtained three new bimetallic cyanide-bridged compounds, namely, {(tetrenH2)0.5[Mn(H2O)2][MoV(CN)8] · 2H2O} n (1) (where, tetren is tetraethylenepentamine), {[Mn2(H2O)4][MoIV(CN)8] · 3H2O} n (2), and {[Mn2(H2O)4][MoIV(CN)8] · 4H2O} n (3). Compound 1 crystallizes in the orthorhombic system with space group Cmc21 and unit cell constants a = 7.8234(15), b = 26.013(5), c = 10.021(2) Å, β = 90°, and Z = 4. Compound 2 crystallizes in the monoclinic system with space group P21/n and unit cell constants a = 7.3329(11), b = 14.372(2), c = 18.070(3) Å, β = 90.869(2)°, and Z = 4. Compound 3 crystallizes in the tetragonal system with space group I4/m and unit cell constants a = b = 11.9371(8), c = 13.2930(18) Å, β = 90°, and Z = 4. X-ray single-crystal structures reveal that the Mo centers adopt a distorted square antiprism coordination environment for 1 and 3, while 2 closed to a bicapped trigonal prism. For these complexes, all the MnII centers in the extended structure adopt distorted octahedron geometry. For 1, each MoV coordinated via four cyanide groups to four MnII ions, and the other four cyanide groups are terminal, forming a two-dimensional framework. For 2, the MoIV center of structural unit coordinated via four cyanide groups to four Mn(1), and the other four cyanide groups coordinated to four Mn(2), forming a three-dimensional framework. For 3, each [MoIV(CN)8]4? building block is linked to MnII ions through its eight CN ligands, and each MnII center is connected to four Mo units forming a three-dimensional framework. In addition, magnetic studies of these complexes have also been presented.  相似文献   

2.
Two tetranuclear manganese complexes, [Mn4(L1)6](ClO4)2?2.75H2O (1) [HL1 = 4-methyl-2-((pyridin-2-ylmethylene)amino)phenol] and [Mn4(L2)4(NO3)3(OH)]?pz?3H2O (2) [HL2 = (1H-pyrazol-1-yl)(pyridin-2-yl)methanol, pz = pyrazole], have been synthesized and characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, and magnetic measurements. The structural analysis revealed that the central manganese ion is linked with three apical manganese ions through six phenoxo-bridges creating a Mn4O6 core for 1; 2 has a cubane-like topology with the Mn(II) ions and the deprotonated oxygens from L2 alternatively occupying vertices. The magnetic studies indicated a weak ferromagnetic coupling interaction (J = 0.48 ± 0.087 cm?1, g = 2.00, θ = ?0.78 K) for 1 and a weak antiferromagnetic spin-exchange interaction (J1 = ?0.50 ± 0.075 cm?1, J2 = ?0.13 ± 0.082 cm?1, g = 1.98) between Mn(II) ions for 2. The magnetostructural correlations of the two Mn4 clusters have been discussed tentatively.  相似文献   

3.
Four linear trinuclear transition metal complexes have been prepared and characterized. The complexes [MII(MeOH)4][FeIII(L)2]2·2MeOH (M = Fe (1) or Ni (2)), [CoII(EtOH)2(H2O)2][FeIII(L)2]2·2EtOH (3), and [MnII(phen)2][MnIII(L)2]2·4MeOH (4) (H2L = ((2-carboxyphenyl)azo)-benzaldoxime, phen = 1,10-phenanthroline) possesses a similar synanti carboxylate-bridged structure. The terminal Fe(III) or Mn(III) ions are low spin, and the central M(II) ions are high spin. Magnetic measurements show that antiferromagnetic interactions were present between the adjacent metal ions via the synanti carboxylate bridges. The antiferromagnetic coupling between low-spin Fe(III) and Ni(II) is unusual, which has been tentatively assigned to the structural distortion of Fe(III).  相似文献   

4.
The complex [MnIV(napbh)2] (napbhH2 = N-(2-hydroxynaphthalen-1-yl)methylenebenzoylhydrazide) reacts with activated ruthenium(III) chloride in methanol in 1 : 1.2 molar ratio under reflux, giving heterobimetallic complexes, [MnIV(napbh)2RuIIICl3(H2O)] · [RuIII(napbhH)Cl2(H2O)] reacts with Mn(OAc)2·4H2O in methanol in 1 : 1.2 molar ratio under reflux to give [RuIII(napbhH)Cl2(H2O)MnII(OAc)2]. Replacement of aquo in these heterobimetallic complexes has been observed when the reactions are carried out in the presence of pyridine (py), 3-picoline (3-pic), or 4-picoline (4-pic). The molar conductances for these complexes in DMF indicates 1 : 1 electrolytes. Magnetic moment values suggest that these heterobimetallic complexes contain MnIV and RuIII or RuIII and MnII in the same structural unit. Electronic spectral studies suggest six coordinate metal ions. IR spectra reveal that the napbhH2 ligand coordinates in its enol form to MnIV and bridges to RuIII and in the keto form to RuIII and bridging to MnII.  相似文献   

5.
Synthesis, structure characterization, and magnetic properties of three novel cyano-bridged complexes {[MnII(bpy)(DMF)2]2[MoIV(CN)8]·1.5H2O} n (1), [CuII(L)]2[MoIV(CN)8]·6.75H2O (2), and [MnII(bpy)2]4[MoIV(CN)8]2·4MeOH·4H2O (3) (where DMF = N,N′-dimethylformamide; bpy = 2,2-bipyridine and L = 1,3,6,8,11,14-hexaazatricyclo[12.2.1.18,11]octadecane) have been studied. The X-ray single-crystal structure reveals that 1 is a cyanide-bridged 1D infinite chain with the alternating of MnII(bpy)(DMF)2 and MoIV(CN)8 moieties. The neighboring chains interact with each other by hydrogen bonding to form a sheet-like network, and the layers further extend to a 3D network due to the face-to-face π···π stack interactions. For 2, the MoIV center adopts a distorted square antiprism coordination environment, while the CuII center adopts a distorted square pyramidal geometry. The weak Mo–CN···Cu interactions between neighboring molecules lead to a 2D network structure of 2. For 3, basic structural unit is centrosymmetric and contains four MnII centers bridged by two octacyanomolybdate(IV). Here, their magnetic properties have also been studied. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Reactions between [Mn(CO)5Br] and dpkbh in low boiling solvents in air gave fac-[MnI(CO)32-Npy,Nim-dpkbh)Br]·H2O, [MnIIBr23-Npy,Nim,O-dpkbh)], and [MnII3-Npy,Nim,O-dpkbh-H)2]·0.5H2O (Nim = imine nitrogen and Npy = pyridyl nitrogen). Crystallization of fac-[MnI(CO)32-Npy,Nim-dpkbh)Br]·H2O from dmso or CH3CN produced dark red crystals of [MnII3-Npy,Nim,O-dpkbh-H)2]·nX (X = dmso, n = 1 and X = H2O, n = 0.22). This is in contrast to the reaction of [Re(CO)5Cl] with dpkbh in refluxing toluene to form fac-[ReI(CO)32-,Npy,Npy-dpkbh)Cl] which can be crystallized from CH3CN, dmso or dmf to form fac-[ReI(CO)32-,Npy,Npy-dpkbh)Cl]·nX (X = CH3CN, n = 0 and solvate = dmso or dmf, n = 1). Infrared spectral measurements are consistent with keto coordination of dpkbh to Mn(I) in fac-[MnI(CO)32-Npy,Nim-dpkbh)Br]·H2O and Mn(II) in [MnIIBr23-Npy,Nim,O-dpkbh)] plus enol coordination of the amide-deprotonated dpkbh, to the Mn(II) center in [MnII3-Npy,Nim,O-dpkbh-H)2]·0.5H2O. Electronic absorption spectral measurements in non-aqueous solvents indicate sensitivity of fac-[MnI(CO)32-Npy,Nim-dpkbh)Br]·H2O and [MnII3-Npy,Nim,O-dpkbh-H)2]·0.5H2O to changes in their outer-shell environments. X-ray crystallographic analyses elucidated the identities of [MnIIBr23-Npy,Nim,O-dpkbh)] and [MnII3-Npy,Nim,O-dpkbh-H)2]·nX and divulged weaker coordination of [dpkbh] to Mn(II) in [MnIIBr23-Npy,Nim,O-dpkbh)] and stronger coordination of [dpkbh-H]? to Mn(II) in [MnII3-Npy,Nim,O-dpkbh-H)2]·0.22H2O. Low-temperature X-ray structural analyses were employed to account for the disorder in the structure of [MnII3-Npy,Nim,O-dpkbh-H)2] and the short NH bond distance observed in the structure of [MnIIBr23-Npy,Nim,O-dpkbh)]. A PLATON Squeeze treatment was invoked to account for the fractional occupancy of lattice water in the structure of [MnII3-Npy,Nim,O-dpkbh-H)2].  相似文献   

7.
The reaction of manganese(II) acetylacetonate (Mn(acac)2), 1,1,1-tris(hydroxymethyl)ethane (H3thme), tris(hydroxymethyl)aminomethane (H3thma), and (CH3)3CCO2H, adamantane-1-carboxylic acid (Hada) in solvothermal method leads to two mixed-valence MnIII4MnII8 clusters, [Mn(III)4Mn(II)85-O)23-MeO)2(thme)4(Me3CCO2)10(H2O)2]·2H2O (1) and [Mn(III)4Mn(II)85-O)23-MeO)2(thma)4(ada)10(H2O)2]·4H2O (2). The MnIII4MnII8 cores of the complexes can be described as a central rhomboid [Mn4O6] layer sandwiched by two [Mn4O7] layers, or capped edge-sharing bioctahedra. The co-parallel alignment of four JT axes of the MnIII ions enhances the magnetic anisotropy of the Mn12 molecules. For the population of low-lying excited states, the attempts to fit the direct current (dc) data of two complexes were failed, while rough spin ground state S = 4 for 1 and S = 2 or 3 for 2 were obtained from alternating current (AC) magnetization studies. The two compounds show clearly nonzero and frequency-dependent out-of-phase (χM′′) ac signal below 3 K, indicating a slow relaxation of the magnetization, confirming 1 and 2 to be SMMs, though out-of-phase AC peak above 1.8 K was not observed. The substitution of tripodal ligands and carboxylate ligands leads to different coordinate modes of the pivalate ligands in the Mn12 clusters and varies the packing modes of Mn12 molecules in the crystal.  相似文献   

8.
The synthesis, structural, and magnetic characterization of five new members of the hexanuclear oximate [MnIII6] family are reported. All five clusters can be described with the general formula [MnIII6O2(R-sao)6(R′-CO2)2(sol)x(H2O)y] (where R-saoH2 = salicylaldoxime substituted at the oxime carbon with R = H, Me and Et; R′ = 1-naphthalene, 2-naphthalene, and 1-pyrene; sol = MeOH, EtOH, or MeCN; x = 0–4 and y = 0–4). More specifically, the reaction of Mn(ClO4)2·6H2O with salicylaldoxime-like ligands and the appropriate carboxylic acid in alcoholic or MeCN solutions in the presence of base afforded complexes 15: [Mn6O2(Me-sao)6(1-naphth-CO2)2(H2O)(MeCN)]·4MeCN (1·4MeCN); [Mn6O2(Me-sao)6(2-naphth-CO2)2(H2O)(MeCN)]·3MeCN·0.1H2O (2·3MeCN·0.1H2O); [Mn6O2(Et-sao)6(2-naphth-CO2)2(EtOH)4(H2O)2] (3); [Mn6O2(Et-sao)6(2-naphth-CO2)2(MeOH)6] (4) and [Mn6O2(sao)6(1-pyrene-CO2)2(H2O)2(EtOH)2]·6EtOH (5·6EtOH). Clusters 3, 4, and 5 display the usual [Mn6/oximate] structural motif consisting of two [Mn3O] subunits bridged by two Ooximate atoms from two R-sao2? ligands to form the hexanuclear complex in which the two triangular [Mn3] units are parallel to each other. On the contrary, clusters 1 and 2 display a highly distorted stacking arrangement of the two [Mn3] subunits resulting in two converging planes, forming a novel motif in the [Mn6] family. Investigation of the magnetic properties for all complexes reveal dominant antiferromagnetic interactions for 1, 2, and 5, while 3 and 4 display dominant ferromagnetic interactions with a ground state of S = 12 for both clusters. Finally, 3 and 4 display single-molecule magnet behavior with Ueff = 63 and 36 K, respectively.  相似文献   

9.
The combined use of 1,1,1-tris(hydroxymethyl)ethane (thmeH3) and azides in Mn carboxylate chemistry has yielded a new family of decanuclear [Mn6Na4O(N3)(O2CR)5(thme)4(H2O)4] (R = Me (1); Et (2)) complexes consisting of mixed-valence Mn 2 II Mn 4 III units with a very rare [Mn66-O)]14+ octahedral core contained within a tetrahedron of four NaI atoms. The [Mn6Na4] units of 1 and 2 are connected via the Na atoms to neighboring units, giving 3-D supramolecular assemblies with large channel cavities. Variable-temperature, solid-state dc and ac magnetization studies carried out in the 1.8–300 K range reveal that the Mn6 units of 1 and 2 are antiferromagnetically coupled to give S = 0 ground states for both complexes.  相似文献   

10.
The diffusion reaction of Mn2+ ions, the bidentate ligand dabco, and [Mo(CN)8]3– units at different temperatures produced 2D layer [MnII(dabco)MoV(CN)8]2 · [MnII(H2O)6] · 2H2O ( 1 ) and 3D network [MnII(dabco)]2[MnII(CH3OH)4][MoV(CN)8]2 · 2H2O ( 2 ). Structural analysis revealed that there are two independent central Mn atoms (Mn1 and Mn2) in the structure for each compound, which exhibit trigonal bipyramid and octahedral arrangement, respectively. Notably, the coordination mode of the Mn2 unit between layers in both compounds was responsible for the resulting structural dimensionalities. The crystal growth process of final products was dominantly controlled by the kinetics. The isolation of both compounds provides an insight into the effect of crystallization temperatures on the formation and structural conversion of manganese octacyanometalates.  相似文献   

11.
12.
Density functional theory (DFT) studies have been undertaken to compute the magnetic exchange and to probe the origin of the magnetic interactions in two hetero‐ and two homo‐valent heptanuclear manganese disc‐like clusters, of formula [MnII4MnIV3(tea)(teaH2)3(peolH)4] ( 1 ), [MnII4MnIII3F3(tea)(teaH)(teaH2)2(piv)4(Hpiv)(chp)3] ( 2 ), [MnII7(pppd)6(tea)(OH)3] ( 3 ) and [MnII7 (paa)6(OMe)6] ( 4 ) (teaH3=triethanolamine, peolH4=pentaerythritol, Hpiv=pivalic acid, Hchp=6‐chloro‐2‐hydroxypyridine, pppd=1‐phenyl‐3‐(2‐pyridyl) propane‐1,3‐dione; paaH=N‐(2‐pyridinyl)acetoacetamide). DFT calculations yield J values, which reproduce the magnetic susceptibility data very well for all four complexes; these studies are also highlighting the likely ageing/stability problems in two of the complexes. It is found that the spin ground states, S, for complexes 1 – 4 are drastically different, varying from S=29/2 to S=1/2. These values are found to be controlled by the nature of the oxidation state of the metal ions and minor differences present in the structures. Extensive magneto–structural correlations are developed for the seven building unit dimers present in the complexes, with the correlations unlocking the reasons behind the differences in the magnetic properties observed. Independent of the oxidation state of the metal ions, the Mn‐O‐Mn/Mn‐F‐Mn angles are found to be the key parameters, which significantly influence the sign as well as the magnitude of the J values. The magneto–structural correlations developed here, have broad applicability and can be utilised to understand the magnetic properties of other Mn clusters.  相似文献   

13.
《Polyhedron》2003,22(14-17):1771-1775
The enneanuclear mixed-valent manganese cage [Mn9O7(OAc)11(thme)(py)3(H2O)2] 1 {Mn9} possesses an S=17/2 ground state as a result of an antiferromagnetic interaction between three ferromagnetically coupled MnIV ions and a wheel of four MnIII and two MnII ions. AC magnetization measurements show a frequency-dependent out-of-phase signal at 3.4 K and 997 Hz, indicative of single-molecule magnetism behaviour. Data obtained from varying the frequency of oscillation of the AC field gives an effective energy barrier (Ueff) for the reversal of magnetization of 27 K. Magnetic measurements of single crystals of 1 at low temperature show time- and temperature-dependent hysteresis loops which contain steps at regular intervals of field. DC and AC relaxation measurements show both the temperature-dependent and temperature-independent regions, the latter being definitive evidence of magnetization tunneling in the lowest energy zero-field split component of the ground state.  相似文献   

14.
The reaction of [HN(n-C4H9)3]3[WV(CN)8]·4H2O, 4,4′-bipyridine dioxide(4,4′-dpdo), and MnCl2·4H2O or CuCl2·2H2O gives two new three-dimensional octacyanometalate-based bimetallic assemblies, {[Mn2 (4,4′-dpdo)(H2O)4] [WIV(CN)8]}·6H2O (1) and {[Cu2(4,4′-dpdo)(H2O)][W(CN)8]}·CH3OH·H2O (2). Compound 1 crystallizes in the orthorhombic system, space group P21212 with cell constants a=10.397(2) -, b= 11.321(2) -, c=12.295(3) - and Z=2, whereas 2 crystallizes in the monoclinic system, space group P21/c with cell con...  相似文献   

15.
We report the syntheses, crystal structure, and magnetic properties of a series of distorted K2NiF4-type oxides Ln2Ca2MnNiO8 (Ln=Pr, Nd, Sm, and Gd) in which Ln/Ca and Mn/Ni atoms randomly occupy the K and Ni sites respectively. The Ln=La compound does not form. These compounds show systematic distortions from the ideal tetragonal K2NiF4 structure (space group I4/mmm) to an orthorhombic structure (space group Pccn) with buckled MO2 (M=Mn/Ni) layers. The degree of distortion is increased as the size of Ln decreases. Based on the magnetic data and X-ray absorption near edge spectra, we assigned MnIV and NiII. The Curie–Weiss plots of the high temperature magnetic data suggest strong ferromagnetic interactions probably due to MnIV–O–NiII linkages, implying local ordering of Mn/Ni ions to form ferromangnetic clusters in the MO2 layers. At low temperatures below 110–130 K, these compounds show antiferromagnetic behaviors because of MnIV–O–MnIV and/or NiII–O–NiII contacts between the ferromagnetic clusters. The Ln=Pr and Nd compounds show additional antiferromagnetic signals that we attribute to the interlayer interactions between the clusters mediated by the Pr3+ and Nd3+ ions in the interlayer spaces. The present compounds show many parallels with the previously reported Ln2Sr2MnNiO8 compounds.  相似文献   

16.
The reaction between Mn(OAc)2·4H2O and Br-saoH2 (=5-Br-salicylaldoxime) in EtOH in the presence of NMe4OH led to the formation of the hexanuclear cluster [Mn6O2(Br-sao)6(OAc)2(H2O)2(EtOH)2]·2.8H2O·2.2EtOH (1). Switching from Mn(OAc)2·4H2O to Mn(ClO4)2·6H2O, the same reaction upon addition of pivH (= trimethyl acetic acid) yielded [Mn6O2(Br-sao)6(piv)2(H2O)2(EtOH)2]·6EtOH (2 6EtOH), and finally upon changing pivH to NaO2CPh, we were able to isolate [Mn6Na2O2(Br-sao)6(O2CPh)4(H2O)2(EtOH)4]·6EtOH (3 6EtOH). Clusters 1 and 2 6EtOH describe “typical” [Mn6/oximate] complexes consisting of two {Mn3} oxo-centered triangular units bridged by oximate groups, while in 3 6EtOH these triangular motifs are separated by two sodium cations. An investigation into the magnetic properties of all three clusters revealed the presence of dominant antiferromagnetic interactions, leading to ground states of S = 4 and 2 for 1 and 3, respectively. Finally, cluster 2 6EtOH functions as a single-molecule magnet with Ueff = 27.54 K.  相似文献   

17.
The reaction of MnII(O2CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII43-OH)4]4+ cubes and octahedral [MnII(CN)6]4− ions interconnected in 3D by MnII-N≡C-MnII linkages. The composition is {[MnII(OH2)3][MnII(OH2)]3}(μ3-OH)4][MnII(μ-CN)2(CN)4] ⋅ H2O=[MnII43-OH)4(OH2)6][MnII(μ-CN)2(CN)4] ⋅ H2O, which is further simplified to [Mn4(OH)4][Mn(CN)6](OH2)7 ( 1 ). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII(CN)6]4− ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie–Weiss expression, χ ∝(Tθ)−1, with θ=−13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc=7.8 K.  相似文献   

18.
The title coordination polymer, poly[bis(μ4‐biphenyl‐2,2′‐dicarboxylato)(dipyrido[3,2‐a:2′,3′‐c]phenazine)manganese(II)], [Mn2(C14H8O4)2(C18H10N4)]n, was obtained through the reaction of MnCl2·4H2O, biphenyl‐2,2′‐dicarboxylic acid (H2dpdc) and dipyrido[3,2‐a:2′,3′‐c]phenazine (L) under hydrothermal conditions. The asymmetric unit contains two crystallographically unique MnII ions, one unique L ligand and two unique dpdc ligands. One Mn ion is six‐coordinated by four O atoms from three different dpdc ligands and two N atoms from one L ligand, adopting a distorted octahedral coordination geometry. The distortions from ideal octahedral geometry are largely due to the presence of chelating ligands and the resulting acute N—Mn—N and O—Mn—O angles. The second Mn ion is coordinated in a distorted trigonal bipyramidal fashion by five O atoms from four distinct dpdc ligands. Four MnII ions are bridged by the carboxylate groups of the dpdc ligands to form an unusual tetranuclear MnII cluster. Clusters are further connected by the aromatic backbone of the dicarboxylate ligands, forming a one‐dimensional chain structure along the b axis. The title compound is the first example of a chain structure based on a tetranuclear MnII cluster.  相似文献   

19.
Kuai  H. W.  Xia  J. J.  Li  D. H.  Hu  T.  Jiang  D. Y. 《Russian Journal of Coordination Chemistry》2017,43(7):473-480

Reactions of Mn(II) and Cd(II) salts with 5-(4-(1H-imidazol-1-yl)phenyl)-1H-tetrazole (HL) under hydrothermal conditions result in complexes [Mn(L)2(H2O)4] · 2H2O (I) and [Cd(L)2(H2O)2] (II), which have been characterized by single crystal and powder X-ray diffractions (CIF files CCDC nos. 943861 (I), 943862 (II)), IR spectroscopy, element and thermogravimetric analyses. Two complexes exhibit structural diversity dependent on different metal salts. Complex I shows discrete mononuclear structure, which can be further linked to build a 3D supramolecular framework through hydrogen bonding interactions. Complex II displays 1D zigzag-chain structure, and an extended 3D framework can be formed by hydrogen bonding. Interestingly, tetranuclear water clusters were generated in I, which can be linked by Mn2+ ions to show 1D metal-bridged water cluster-chain structure. The present work provides an example that metal centers impact on coordination modes of ligand and consequent structural variation of resulted complexes. Moreover, fluorescence property of II was investigated.

  相似文献   

20.
In the title compound, [Mn2(C7H6NO2)2(C2H3O2)2(C10H8N2)2], the two MnII atoms are each coordinated by one 2,2′‐bi­pyridyl mol­ecule, one 4‐amino­benzoate ion and two acetate ions. The two Mn atoms exhibit different coordination environments: one is coordinated by two N and four O atoms, while the other is coordinated by two N and three O atoms. The two Mn atoms are bridged by two acetate ions in a synanti mode, with an Mn⋯Mn distance of 4.081 (1) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号