首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mononuclear and dinuclear copper(II) complexes [Cu2(μ-nap)4(3-pic)2] (1) and [Cu(nap)2(H2O)(4-pic)2] (2) have been synthesized in the presence of 3-picoline and 4-picoline. Two complexes were characterized by FT-IR, UV–vis spectroscopic methods and their thermal stabilities were determined by TG/DTA/DTG techniques. The crystal structures of 1 and 2 were established by X-ray analysis. X-ray structure analysis has shown that copper(II) has a distorted square-pyramidal geometry. Naproxenate is a bridging ligand in 1 and monodentate in 2. Two complexes have shown catalytic activity on oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations. The complexes were also screened for antimicrobial activity against pathogenic bacteria and fungi. The complexes exhibited antimicrobial activity against Entrococcus faecalis and Candida albicans.  相似文献   

2.
The chiral (ONS) dianionic Schiff base ligand benzoin thiosemicarbazone (H2L) reacts with MoO2(acac)2 to give the polymeric complex [(MoO2L) n ] (1) (Type 1). The reaction of MoO2L with pyridine (py), 3-picoline (3-pic) or 4-picoline (4-pic) gives [MoVIO2LD] (D = py, 3-pic or 4-pic) (Type 1). Further, the reaction of [MoO2L] or [MoO2LD] with PPh3 or reaction of [MoO2L] with PPh3 (plus bpy or phen, D) in the presence of donor reagents D gives [MoIVOL] or [MoIVOLD] (Type 2). On the other hand, the reaction of [MoO2L] with hydrazides (zdhH3) such as benzoylhydrazine (bhH3), isonicotinoylhydrazine (inhH3), nicotinoylhydrazine (nhH3), salicyloylhydrazine (slhH3) and thiosemicarbazide (tscH3) produced non-oxo–diazenido complexes [MoL(zdh)] (Type 3). The complexes have been characterized by elemental analyses, molar conductance, magnetic moment, electronic, i.r. and e.s.r. spectroscopic measurements.  相似文献   

3.
Four 2-benzoylbenzoate (bba) complexes, [Co(bba)2(H2O)2(3-pic)2] (1), [Ni(bba)2(H2O)2(3-pic)2] (2), [Cu(bba)2(3-pic)2] (3), and [Hg(bba)2(3-pic)2] (4), have been synthesized and characterized by IR spectra, thermal (TG, DTG, and DTA) analysis, and single crystal X-ray diffraction. All the complexes consist of neutral monomeric units with 1 and 2 crystallizing in the orthorhombic (P n a 21), 3 in triclinic (P 1), and 4 in monoclinic (P21/c) crystal systems. The metal(II) ions exhibit distorted octahedral coordination for 1, 2, and 3 and mercury(II) exhibits distorted trigonal prism coordination. In 1 and 2, bba is monodentate, whereas in 3 and 4 bba is bidentate. 3-Picoline (3-pic) is a classical N-monodentate ligand. Bba are coordinated to metal(II) with carboxylates and IR spectra of all complexes display characteristic absorptions of carboxylate {υ(OCO)asym and υ(OCO)sym}. Thermogravimetric (TG) analyses show that 1 and 2 are thermally stable (Tdecomp.?>?60°C) and 3 and 4 are thermally stable (Tdecomp . ?>?120°C).  相似文献   

4.
Manganese(IV) complexes [MnIV(npah)(H2O)2] (1) and [MnIV(npah)(A)2]?·?nH2O (where A?=?py (2), 2-pic (3), 3-pic (4), 4-pic (5)) and MnIV(npah)(NN)] (NN?=?bpy (6) and phen (7)) have been synthesized from bis(2-hydroxy-1-naphthaldehyde)adipoyldihydrazone in methanol. The composition of the complexes has been established by elemental analyses. Complex 3 has been characterized by mass spectral data also. Structural assessment of the complexes has been based on data from molar conductance, magnetic moment, electronic, electron paramagnetic resonance, and infrared (IR) spectral studies. Molar conductances of the complexes in DMSO suggest non-electrolytes. Magnetic moment and EPR studies suggest +4 oxidation state for manganese in these complexes. Electronic spectral studies suggest six-coordinate octahedral geometry around the metal ions. IR spectra reveal that H4npah coordinates to the metal in enol form. Reaction of the complexes with benzyl alcohol and SO2 has been investigated. Cyclic voltammetric studies of the complexes have also been carried out.  相似文献   

5.
Monometallic zinc(II) and nickel(II) complexes, [Zn(H2nsh)(H2O)] (1) and [Ni(H2nsh)(H2O)2] (2), have been synthesized in methanol by template method from bis(2-hydroxy-1-naphthaldehyde)succinoyldihydrazone (H4nsh). Reaction of monometallic complexes with alternate metal(II) acetates as a transmetallator in 1 : 3 molar ratio resulted in the formation of heterobimetallic complexes [NiZn(nsh)(A)3] and [ZnNi(nsh)(A′)2] (A = H2O (3), py (4), 2-pic (5), 3-pic (6), 4-pic (7)), (A′ = H2O (8), py (9), 2-pic (10), 3-pic (11), and 4-pic (12)). The complexes have been characterized by elemental analyzes, mass spectra, molar conductance, magnetic moments, electronic, EPR, and IR spectroscopies. All of the complexes are non-electrolytes. Monometallic zinc(II) is diamagnetic while monometallic nickel(II) complex and all heterobimetallic complexes are paramagnetic. The metal centers in heterobimetallic complexes are tethered by dihydrazone and naphthoxo bridging. Zinc(II) is square pyramidal; nickel(II) is six-coordinate distorted octahedral except [ZnNi(nsh)(A)2], in which nickel(II) has square-pyramidal geometry. The displacement of metal center in monometallic complexes by metal ion has been observed in the resulting heterobimetallic complexes.  相似文献   

6.
The mononuclear nickel(II) complex [Ni(H2slox)(H2O)3] (1) and polymeric dinuclear complexes [Ni2(slox)(A4)] {A = H2O (2), py (3), 2-pic (4), 3-pic (5) and 4-pic (6)} and the discrete binuclear complexes [Ni2(slox)(NN)3] {NN = bpy (7) and phen (8)} have been synthesized from disalicylaldehyde oxaloyldihydrazone (H4slox) in methanol. All of the complexes are nonelectrolytes. Complexes 1, 7, and 8 are paramagnetic while binuclear 26 possess anomalously low μ eff value, indicating considerable metal–metal interaction. Discrete binuclear 7 and 8 have no interaction between the two nickel(II) ions. The anomalously low magnetic moment values in 26 are explained as metal–metal interaction via phenoxide bridge. Such metal–metal interactions are less in 7 and 8 due to coordination of bipyridine and phenanthroline molecules which do not allow phenoxide bridging. The dihydrazone coordinates to the metal center as a dibasic tridentate ligand in keto-enol form in staggered configuration in 1, while in the remaining complexes the dihydrazone is tetrabasic hexadentate in enol form in anticis configuration. The metal center has a tetragonally distorted octahedral stereochemistry.  相似文献   

7.
The complex [Mn(L)(H2O)2] [H4L = bis[N-(2-hydroxynaphthalen-1-yl)methylene]-oxaloyldihydrazide] reacts with activated ruthenium(III) chloride in methanol in 1:1.2 M ratio under reflux resulting in heterobimetallic complex of the composition [Mn(L)(H2O)4RuCl2]Cl. The complexes of the composition [Mn(L)(A)4RuCl2]Cl were obtained when the above reaction was carried out in presence of heterocyclic nitrogen bases(A) such as pyridine(py), 3-picoline(3-pic) and 4-picoline(4-pic). The molar conductance values for these complexes in DMF(N,N-dimethyl formamide) solution indicate their 1:1 electrolytic nature. Magnetic moment values suggest that these heterobimetallic complexes contain Mn(IV) and Ru(III) in the same structural unit. Electronic spectral studies suggest six coordinated metal ions in these complexes. IR spectra reveal that the H4L ligand coordinates in its keto-form to Mn(IV) and Ru(III).  相似文献   

8.
The diamagnetic dioxomolybdenum(VI) complex [(MoO2)2(CH2L)(H2O)2]H2O (1) has been isolated in solid state from reaction of MoO2(acac)2 with bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) in 3:1 molar ratio in ethanol at higher temperature. The reaction of the complex (1) with electron donor bases gives diamagnetic molybdenum(VI) complexes having composition [Mo2O5(CH2LH2)]·2A·2H2O (where A = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), 4-picoline (4-pic, 5)). Further, when the complex (1) is allowed to react with protonic bases such as isonicotinoylhydrazine (inhH3) and salicyloylhydrazine (slhH3), reduction of molybdenum(VI) centre occurs leading to isolation of homobimetallic molybdenum(V) complexes [Mo2(CH2L)(inh)2(H2O)2] (6) and [Mo2(CH2L)(slh)2] (7), respectively. The composition of the complexes has been established by analytical, thermo-analytical and molecular weight data. The structure of the molybdenum(VI) complexes (1)–(5) has been established by electronic, IR, 1H NMR and 13C NMR spectral studies while those of the complexes (6) and (7) by magnetic moment, electronic, IR and EPR spectral studies. The dihydrazone is coordinated to the metal centres in staggered configuration in complex (1) while in anti-cis configuration in complexes (2)–(7). The complexes (6) and (7) possess magnetic moment of 2.95 and 3.06 BM, respectively, indicating presence of two magnetic centre in the complexes per molecule each with one unpaired electron on each metal centre without any metal–metal interaction. The electronic spectra of the complexes are dominated by strong charge transfer bands. All of the complexes involve six coordinated molybdenum centre with octahedral arrangement of donor atoms except in the complex (6), in which the molybdenum centre has rhombic arrangement of ligand donor atoms. The probable mechanism for generation of oxo-group in the complexes (2)–(5) involving coordinated water molecule has been proposed.  相似文献   

9.
Coordination behavior of 4,5,6,7-tetrahydro-1H-indazole (H-Ind) with Cu(II), Co(II), and Ag(I) was studied. The ligand affords complexes bearing different geometries depending upon the metal and anion present in the starting salts. Five compounds with different structural perspectives, trans-[CuCl2(H-Ind)4] (1), trans-[CuBr2(H-Ind)4] (2), trans-[Cu(CH3COO)2(H-Ind)2] (3), trans-[CoCl2(H-Ind)4] (4), and [Ag(H-Ind)2]NO3 (5), were obtained. The ligand adopts tetrahydro-1H-indazole isomeric form in Cu(II) and Co(II) complexes and with Ag(I) ion the same ligand adopts tetrahydro-2H-indazole form. In the case of sterically demanding acetate counter ion in contrast to Cl or Br, the Cu(II) ion accepts two equivalents of the ligand and four-coordinated square planar complex was obtained. With AgNO3, the expected complex was obtained. The yield of reactions was >80% and all complexes were obtained as crystalline material from the reaction mixtures. Their structures were determined by X-ray diffraction and all complexes were tested for antibacterial (Enterobacter sakazkii, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniea), antifungal (Aspergillus flavus, Aspergillus fumegatus, Aspergillus nigar, Fusarium oxysporium), and antioxidant (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) activities. The same were also tested as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) .  相似文献   

10.
Copper(II) complexes of 3-methylpicolinic acid (3-MepicH), namely [Cu(3-Mepic)2] · 2H2O (1) and [Cu(3-Mepic)2(4-pic)] (2) were prepared and characterized by IR spectroscopy and thermal analysis (TGA/DTA). Crystal structure for 2 was determined by X-ray crystal structure analysis. 1 was prepared by reaction of copper(II) sulfate pentahydrate and 3-methylpicolinic acid in aqueous solution, while 2 was prepared by recrystallization of 1 from 4-picoline solution. Structure analysis revealed square-pyramidal copper(II) coordination and N,O-chelating mode of 3-methylpicolinic acid in 2. Copper(II) is coordinated by two 3-Mepic ligands in the basal plane of a square pyramid and by 4-picoline in the apical position. Crystal packing of 2 is dominated by weak intermolecular C–H ··· O hydrogen bonds and π ··· π stacking interactions forming a complex three-dimensional supramolecular architecture.  相似文献   

11.
Monometallic molybdenum(VI) complexes [MoO2(CH2LH2)]?·?H2O (1), [Mo2O4(CH2LH2)2(A)2] (A?=?py (2), 2-pic (3), 3-pic (4) and 4-pic (5)) and molybdenum(V) complexes [Mo(CH2LH2)(inh)]?·?H2O (6) and [Mo(CH2LH2)(slh)] (7) of bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) have been synthesized and characterized by various physico-chemical and spectroscopic studies. The compositions of the complexes have been established by elemental analyses and molecular weight determination. The structural assessment of the complexes has been done on the basis of data obtained from molar conductances, magnetic moment studies, electronic, infrared, electron paramagnetic resonance (EPR), proton nuclear magnetic resonance, and 13C proton nuclear magnetic resonance spectroscopic studies. The molar conductance values for the complexes in DMSO suggest that they are non-electrolytes. The magnetic moment values for 6 and 7 correspond to one unpaired electron while the remaining complexes are diamagnetic. Complexes 1, 6, and 7 have six-coordinate octahedral stereochemistry around molybdenum, while 25 are eight-coordinate dodecahedral around the metal centers. EPR spectral features suggest that 7 is less symmetrical than 6.  相似文献   

12.
Reaction of 2-hydroxy-1-naphthaldehydebenzoylhydrazone(napbhH2) with manganese(II) acetate tetrahydrate and manganese(III) acetate dihydrate in methanol followed by addition of methanolic KOH in molar ratio (2 : 1 : 10) results in [Mn(IV)(napbh)2] and [Mn(III)(napbh)(OH)(H2O)], respectively. Activated ruthenium(III) chloride reacts with napbhH2 in methanolic medium yielding [Ru(III)(napbhH)Cl(H2O)]Cl. Replacement of aquo ligand by heterocyclic nitrogen donor in this complex has been observed when the reaction is carried out in presence of pyridine(py), 3-picoline(3-pic) or 4-picoline(4-pic). The molar conductance values in DMF (N,N-dimethyl formamide) of these complexes suggest non-electrolytic and 1 : 1 electrolytic nature for manganese and ruthenium complexes, respectively. Magnetic moment values of manganese complexes suggest Mn(III) and Mn(IV), however, ruthenium complexes are paramagnetic with one unpaired electron suggesting Ru(III). Electronic spectral studies suggest six coordinate metal ions in these complexes. IR spectra reveal that napbhH2 coordinates in enol-form and keto-form to manganese and ruthenium metal ions in its complexes, respectively. ESR studies of the complexes are also reported.  相似文献   

13.
The complex [MnIV(napbh)2] (napbhH2 = N-(2-hydroxynaphthalen-1-yl)methylenebenzoylhydrazide) reacts with activated ruthenium(III) chloride in methanol in 1 : 1.2 molar ratio under reflux, giving heterobimetallic complexes, [MnIV(napbh)2RuIIICl3(H2O)] · [RuIII(napbhH)Cl2(H2O)] reacts with Mn(OAc)2·4H2O in methanol in 1 : 1.2 molar ratio under reflux to give [RuIII(napbhH)Cl2(H2O)MnII(OAc)2]. Replacement of aquo in these heterobimetallic complexes has been observed when the reactions are carried out in the presence of pyridine (py), 3-picoline (3-pic), or 4-picoline (4-pic). The molar conductances for these complexes in DMF indicates 1 : 1 electrolytes. Magnetic moment values suggest that these heterobimetallic complexes contain MnIV and RuIII or RuIII and MnII in the same structural unit. Electronic spectral studies suggest six coordinate metal ions. IR spectra reveal that the napbhH2 ligand coordinates in its enol form to MnIV and bridges to RuIII and in the keto form to RuIII and bridging to MnII.  相似文献   

14.
New antimony(III) chloride complexes with heterocyclic thioamides, thiourea (TU), 2-mercapto-5-methyl-benzimidazole (MMBZIM), 3-methyl-2-mercaptobenzothiazole (MMBZT), 2-mercaptopyrimidine (PMT), 2-mercaptopyridine (PYT) of formulae [SbCl3(TU)2] (1), [SbCl3(MMBZIM)2] (2), [SbCl3(MMBZT)2] (3), [SbCl3(PMT)2] (4), [SbCl3(μ 2-S)(PYT)2] (5) were synthesized and characterized by elemental analysis, FT-IR and FT-Raman spectroscopies, and TG-DTA analysis. The crystal structure of 5 was also determined by X-ray diffraction. [C10H10Cl3N2S2Sb] (5) crystallizes in space group C2/c, with a?=?25.0169(10)?Å, b?=?9.7952(3)?Å, c?=?12.9329(5)?Å, β?=?109.702(4)°, and Z?=?8. Crystals of 5 grown from acetonitrile solutions adopt a square-pyramidal geometry. The equatorial plane is formed by three chlorides and one sulfur atom from the thione ligand while the second sulfur is axial. The complexes were evaluated for their biological activities and compared with [SbCl3(MMI)2] (6) (MMI?=?2-mercapto-1-methylimidazole) and other isostructural ones. The complexes showed moderate cytostatic activity against murine leukemia cells (L1210), murine mammary carcinoma cells (FM3A), human T-lymphocyte (Molt4/C8, CEM), and human cervix carcinoma (HeLa) cells. The chloro and iodo derivatives show better cytostatic activity than the bromo ones.  相似文献   

15.
16.
Two mononuclear complexes with a β-diketone ligand (Z)-3-hydroxy-4-(3-hydroxy-3-phenylacryloyl)phenyl benzoate (L), [CoL2(CH3CH2OH)2] (1), and [MnL2(CH3CH2OH)2] (2) were prepared. Both complexes were characterized by X-ray crystallography, confirming that the central metal(II) are coordinated by four oxygens from two L and two oxygens from two ethanols. Both complexes were assayed for in vitro antibacterial (Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, and Enterobacter cloacae) activities and showed better antimicrobial activity against Gram positive strains than Gram negative strains.  相似文献   

17.
18.
Mixed ligand complexes of Co(II) with nitrogen and sulfur donors, Co(OPD)(S–S) · 2H2O and Co(OPD)(S–S)L2 [OPD = o-phenylenediamine; S–S = 1,1-dicyanoethylene-2,2-dithiolate (i-MNT2?) or 1-cyano-1-carboethoxyethylene-2,2-dithiolate (CED2?); L = pyridine (py), α-picoline (α-pic), β-picoline (β-pic), or γ-picoline (γ-pic)], have been isolated and characterized by analytical data, molar conductance, magnetic susceptibility, electronic, and infrared spectral studies. The molar conductance data reveal non-electrolytes in DMF. Magnetic moment values suggest low-spin and high-spin complexes. The electronic spectral studies suggest distorted octahedral stereochemistry around Co(II) in these complexes. Infrared spectral studies suggest bidentate chelating behavior of i-MNT2?, CED2?, or OPD while other ligands are unidentate in their complexes.  相似文献   

19.
Bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone(naohH4) interacts with manganese(II) acetate in methanol followed by addition of KOH giving [MnIV(naoh)(H2O)2]. Activated ruthenium(III) chloride reacts with naohH4 in methanol yielding [RuIII(naohH4)Cl(H2O)Cl2]. The replacement of aquo by heterocyclic nitrogen donor in these complexes has been observed when the reaction is carried out in presence of heterocyclic nitrogen donors such as pyridine(py), 3-picoline(3-pic) or 4-picoline(4-pic). The molar conductance values in DMF for these complexes suggest non-electrolytic nature. Magnetic moment values suggest +4 oxidation state for manganese in its complexes, however, ruthenium(III) complexes are paramagnetic with one unpaired electron. Electronic spectral studies suggest six coordinate metal ions. IR spectra reveal that naohH4 coordinates in enol-form and keto-form to manganese and ruthenium, respectively. ESR and cyclic voltammetric studies of the complexes have also been reported.  相似文献   

20.
Four metal complexes of N,N′-bis(salicyl)-2,6-pyridine-dicarbohydrazide ligand (H6L), [CoII(H4L)(H2O)2]·2DMF (1), [ZnII(H4L)(H2O)2]·2DMF (2), [CdII(H4L)(Py)2]·DMF·Py (3), and [CoIICo2III(H4L)4(H2O)4]·DMF·H2O (4), were synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Structural studies revealed that complexes 13 present discrete mononuclear structures and complex 4 displays a centrosymmetric mixed-valence trinuclear structure. All four complexes are further extended into interesting two- or three-dimensional supramolecular frameworks. The luminescent properties of 2 and 3 were studied, which show emissions with maxima at 485 nm upon excitation at 396 nm for 2 and 476 nm upon excitation at 397 nm for 3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号