首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of present study is to design food-grade W/O/W double emulsions encapsulating Mg2+ and investigate their stability and release properties. Prepared emulsions were characterized in terms of global stability, particle size, rheological properties, and interfacial tension. The double emulsions were sensitive to the presence of magnesium salt. The mean droplet size and viscosity of emulsions was positively correlated to MgCl2 concentration. The microscopic pictures confirmed that the water transfer between two aqueous phases caused the reduced stability of double emulsions. It was suggested that swelling breakdown was the main mechanism in controlling the release of encapsulated Mg2+.  相似文献   

2.
Abstract

The aim of this work was to study the encapsulation properties of polyols-in-oil-in-water (P/O/W) multiple emulsions for Vitamin C (Vc). The influence of formulation factors, including the concentration of lipophilic emulsifier, hydrophilic emulsifier, salt and glycerol had been investigated. The results indicated that the encapsulation stability could be improved by increasing the lipophilic emulsifier concentration which could strengthen the interfacial film. In contrast, the excess of hydrophilic emulsifier destabilized the emulsion. The presence of glycerol in the outer aqueous phase accelerated the phase transfer, thus reduced the encapsulation rate. The addition of salt in inner polyols phase had little effect on encapsulation rate while markedly affected the morphology and stability of this system. P/O/W multiple emulsions showed better encapsulation stability than the W/O/W multiple emulsions as the former’s encapsulation rate could remain more than 75% after 2?weeks while the latter only remained less than 60%. Meanwhile, the P/O/W emulsions exhibited higher storage modulus (G’), bigger loss modulus (G’’) and broaden linear viscoelastic regions than W/O/W emulsions.  相似文献   

3.
W/O/W type multiple emulsions were prepared by two step emulsification procedures using an oily lymphographic agent, lipiodol, as an inner oil phase and Pluronic F-68 as a hydrophilic emulsifier contained in the outer aqueous phase. Span 80, Pluronic L-64 and HCO-60 were used as emulsifiers incorporating them into the inner oil phase. The phase volume of the inner and outer aqueous phases and the yield of the w/o/w type multiple emulsions were studied. The dissolution behaviour of the w/o/w type multiple emulsions were determined by a dialysis method employing cellulose tubing. The effect of emulsifier type and the amount of HCO-60 on the stability and prolonged release behavior of the w/o/w type multiple emulsions with or without lecithin, was also examined. The results indicate the HCO-60 is a better emulsifier than Span 80 or Pluronic L-64. Its use improves the stability and the prolonged release behavior of w/o/w type multiple emulsions.  相似文献   

4.
W/O/W乳液的渗透溶胀与夹带溶胀   总被引:6,自引:0,他引:6  
研究了W/O/W乳液的溶胀,实验结果表明,渗透溶胀随内外相溶液间的渗透压差、表面活性剂及载体浓度的增大而增加,但随膜粘度的增加而降低,渗透压差较高时,水渗透的影响大于夹带的影响;膜相中含氧化合物对溶胀的影响大于含氮化合物,采用Span 80作乳化剂时,比采用E 644渗透溶胀约高6倍,夹带溶胀也较高;重复聚结再分散使夹带溶胀急剧增加,因而多级混合澄清槽对液膜操作似不适用。  相似文献   

5.
Caffeic acid, a natural phenol with antioxidant and sunscreen activity, can undergo photooxidation upon UV irradiation. The photodegradation of caffeic acid at different concentrations was assessed in water, at pH 4.0 and 6.0, without and with TiO2. The study was then carried out on W/O/W emulsions entrapping the phenolic acid either in the inner or in the outer aqueous phase in the absence and in the presence of TiO2, added in the external phase (pH 6.0 or 7.0). The degradation of caffeic acid followed a pseudo-zero order kinetic with an inverse dependence from its initial concentration; at increasing pH of the medium caffeic acid degraded faster. The addition of TiO2 increased the initial photodegradation rate. Compared with water, W/O/W emulsions protected the phenol towards both the photodegradation and the photocatalytic activity of TiO2. Multiple systems allowed to incorporate caffeic acid and TiO2 in the same formulation avoiding any catalytic interactions.  相似文献   

6.
Water-in-oil-in-water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well-known problem for liquid oil-based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil-based double emulsion and a solid fat-based double emulsion. Water transport was assessed by low-resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2-relaxometry. The solid fat-based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces.  相似文献   

7.
Experimental investigations on the hydrophobic modification of SPG membranes and the preparation of monodisperse W/O (water-in-oil) emulsions using the modified membranes were carried out. Effects of the osmotic pressure of disperse phase, the average pore size of membranes, emulsifier concentrations in continuous phase and the transmembrane pressure on the average size, size distribution and size dispersion coefficient of emulsions were systematically studied. The stability of W/O emulsions was also investigated. The results showed that SPG membranes took on excellent hydrophobicity through the modification by silane coupler reagent (octyltriethoxysilane) or by silicone resin (polymethylsilsesquioxane). Monodisperse W/O emulsions with size dispersion coefficient of about 0.25, which meant high monodispersity, were successfully prepared by using the hydrophobically modified SPG membranes with average pore sizes of 1.8, 2.0, 2.5, 4.8 and 11.1 microm. When the osmotic pressure was lower than 0.855 MPa, the average size of emulsions was gradually increased while the size dispersion coefficient delta gradually decreased with the osmotic pressure; when the osmotic pressure was higher than 0.855 MPa, both the coefficients kept unvarying. When kerosene was saturated with disperse phase in advance, the average size of emulsions became larger and the monodispersity of emulsions was slightly better than that prepared using unsaturated kerosene. The smaller the pore size of SPG membranes was, the better the monodispersity of the W/O emulsions. The average size and size dispersion coefficient delta were nearly independent on the emulsifier concentrations when the PGPR concentration was in the range from 0.5 to 5.0 wt%, whereas both of them slightly increased as the PGPR concentration was below 0.5 wt%. The effect of the transmembrane pressure on size distributions was slight. Both the average size and size dispersion coefficient delta slightly increased to some extent with the increase of the transmembrane pressure in the experimental range. The stability of the W/O emulsions was dependent on the storage time. The mean size of W/O emulsions decreased gradually with the increase of storage time at the first 35 days, and then kept constant; while the size dispersion coefficient of W/O emulsions was nearly not changed.  相似文献   

8.
This paper presents new protocols enabling preparation of W1/O/W2 double emulsions: one, using soybean oil as the O phase, that yields edible emulsions with industrial applications, and a second that yields emulsions with a previously unattainable concentration 15% (w/w) of surfactants in the external phase (the 15% target was chosen to meet the typical industry standard). Preparation of a stable W1/O emulsion was found to be critical for the stability of the system as a whole. Of the various low HLB primary surfactants tested, only cethyl dimethicone copolyol (Abil EM90), A-B-A block copolymer (Arlacel P135), and polyglycerol ester of ricinoleic acid (Grinstead PGR-90) yielded a stable W/O emulsion. Investigation of the surface properties of those surfactants using the monolayer technique found two significant similarities: (1) stable, compressible, and reversibly expandable monolayers; and (2) high elasticity and surface potential. The high degree of elasticity of the interfacial film between W1 and O makes it highly resilient under stress; its failure to break contributes to the stability of the emulsion. The high surface potential values observed suggest that the surfactant molecules lie flat at the O/W interfaces. In particular, in the case of PGR-90, the hydroxyl (-OH) groups on the fatty acid chains serve as anchors at the O/W interfaces and are responsible for the high surface potential. The long-term stability of the double emulsion requires a balance between the Laplace and osmotic pressures (between W1 droplets in O and between W1 droplets and the external aqueous phase W2). The presence of a thickener in the outer phase is necessary in order to reach a viscosity ratio (preferably approximately 1) between the W1/O and W2 phases, allowing dispersion of the viscous primary emulsion into the W2 aqueous phase. The thickener, which also serves as a dispersant and consequently prevents phase separation due to its thixotropic properties, must be compatible with the surfactants. Finally, the interactions between the low and high HLB emulsifiers at the O/W2 interface should not destabilize the films. It was observed that such destructive interaction for the system could be prevented by the use of two high HLB surfactants in the outer aqueous phase: an amphoteric surfactant, Betaine, and an anionic surfactant, sodium lauryl ether sulfate. The combination of such pairs of surfactants was found to contribute to the films' stability.  相似文献   

9.
Rheometrical techniques can be profitably used for polysaccharide matrices in order to evaluate their suitability for the preparation of stable cosmetic O/W emulsions. In particular, the rheological properties of aqueous scleroglucan systems were investigated under continuous and oscillatory shear conditions in a polymer concentration range (0.2-1.2% w/w) embracing the sol/gel transition. The effects due to the addition of two different surfactants (up to 10% w/w) were examined at constant polymer concentration (0.4% w/w). The selected additives are a nonionic polymeric siliconic surfactant (dimethicone copolyol) and a cationic surfactant (tetradecyltrimethylammonium bromide), respectively. Polysaccharide-surfactant interactions leading to complex formation were detected also through rheology. The combined action of both nonionic and cationic surfactants in the polymer solution was examined at two different surfactant concentration levels (5 and 10% w/w), demonstrating the beneficial effects produced on the mechanical properties of the polymer matrix by the coexistence of both surfactants. Such beneficial effects are confirmed by the stability and rheology shown by the emulsions prepared. In this way, the results point out the good agreement between the rheology of the continuous phase and the final characteristics of the emulsion obtained.  相似文献   

10.
The objective of this work was to obtain water-in-oil (w/o) emulsions with polyglycerol polyricinoleate (PGPR) as emulsifier and to study the effect of the addition of calcium in the dispersed aqueous phase on the stability of these systems. Emulsions were formulated with 0.2, 0.5 and 1.0% w/w PGPR and 10% w/w water containing calcium chloride at varied concentrations or other salts (calcium lactate or carbonate; sodium, magnesium or potassium chloride). The stability of these systems was studied with a vertical scan analyzer during 15 days; coalescence and sedimentation were observed as simultaneous destabilization processes. The increase of PGPR concentration and/or calcium chloride content gave more stable emulsions. The stabilizing effect of calcium salt was attributed to the diminution of the water droplets size, the decrease of the attractive force between water droplets and the increase of the adsorption density of the emulsifier. The viscoelastic parameters of the interfacial film were decreased with increasing calcium and PGPR concentrations. Calcium chloride produced a higher increase of stability than calcium salts with lower dissociation degree. The presence of any assayed salt in the aqueous phase also allowed the stabilization of w/o emulsions with higher water contents.  相似文献   

11.
Formulation optimization of emulsifiers for preparing multiple emulsions was performed in respect of stability by using artificial neural network (ANN) technique. Stability of multiple emulsions was expressed by the percentage of reserved emulsion volume of freshly prepared sample after centrifugation. Individual properties of multiple emulsions such as droplet size, δ, viscosity of the primary and the multiple emulsions were also considered. A back‐propagation (BP) network was well trained with experimental data pairs and then used as an interpolating function to estimate the stability of emulsions of different formulations. It is found that using mixtures of Span 80 and Tween 80 with different mass ratio as both lipophilic and hydrophilic emulsifiers, multiple W/O/W emulsions can be prepared and the stability is sensitive to the mixed HLB numbers and concentration of the emulsifiers. By feeding ANN with 39 pairs of experimental data, the ANN is well trained and can predict the influences of several formulation variables to the immediate emulsions stability. The validation examination indicated that the immediate stability of the emulsions predicted by the ANN is in good agreement with measured values. ANN therefore could be a powerful tool for rapid screening emulsifier formulation. However, the long‐term stability of the emulsions is not good, possibly due to the variation of the HLB number of the mixed monolayers by diffusion of emulsifier molecules, but can be greatly improved by using a polymer surfactant Arlacel P135 to replace the lipophilic emulsifier.  相似文献   

12.
Demulsification rate and zeta potential of O/W emulsions   总被引:1,自引:0,他引:1  
Dilute oil-in-water (O/W) emulsions have been used to study the correlation between demulsification rate and-potential as a function of surfactant concentration. The demulsification rate of octane and isooctane emulsions stabilized by sodium dodecyl sulfate (SDS) or cetyldimethylbenzylammonium chloride (CDBACl) are evaluated by counting the particle number. Flocculation is considered the main factor of instability. The-potential of the droplets is also calculated from microelectrophoretic measurements by a new demountable microelectrophoretic apparatus. The stability of the emulsions is attributed mainly to electrostatic repulsion. Small differences between straight and branched-chain hydrocarbons are observed.  相似文献   

13.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

14.
Transition from oil-in-water (O/W) emulsions to water-in-oil (W/O) emulsions and its action on enhanced oil recovery was investigated by viscosity, morphology, and simulated flooding experiments. This transition can be realized by increasing the volume ratio of oil to water or decreasing the emulsifier concentration. At a mass concentration of 0.3 wt%, the self-developed emulsifier FJ-1 mainly forms O/W emulsions at a volume ratio (oil to water) of 1:1. The emulsions behave as O/W emulsions with a low viscosity when the volume ratio of oil to water is below 2:1. Above 2:1, increasing volume ratio leads to the O/W emulsions transferring into W/O emulsions with high viscosity. For example, at a volume fraction of 4:1, the viscosity of W/O emulsions reaches 229.1 mPa · s, and separated water can hardly be detected. Transition from O/W emulsions to W/O emulsions with high viscosity can also be realized by decreasing the concentration of emulsifier to 0.05 wt% or lower at a volume ratio of 1:1. These may be the critical factors leading to transition from O/W emulsions to W/O emulsions at core conditions. Simulated flooding experiments show that emulsifier fluids can act as an in situ mobility improver and make an improvement of oil recovery even by 20.4%. The results indicate that the water-in-crude-oil emulsions possess great potential in enhancing oil recovery.  相似文献   

15.
In the frame of formulation of W/O emulsions entrapping polysaccharides devoted to agricultural applications, the aim of this work was to study the stability over time of these emulsions, stabilized with either soybean lecithin or polyglycerol polyricinoleate (PGPR) as emulsifiers. Emulsifiers were dissolved in oil phase, and polysaccharides (carboxymethycellulose (CMC), guar, xanthan) in ultrapure water. Emulsions stability was studied through natural aging tests and accelerated aging tests, using bottle tests, microscopy and calorimetry. Experiments showed that PGPR was more efficient than lecithin to stabilize emulsions containing the polysaccharides studied, and that emulsions prepared with CMC showed the best stability.  相似文献   

16.
Water-in-oil-in-water (W/O/W) double emulsion can be prepared by incomplete phase inversion method using both medium chain triglycerides (MCT) and isopropyl myristate (IPM) as oil phase, Span 85-Tween 80 (HLB values of 2.5-3.0) as mixed emulsifiers. The preparation method was simple, and the final double emulsions were proved of good microstructure and particle size distribution. Owning to the addition of Tween 80 to Span 85, interfacial tension, interfacial viscosity and modulus decreased, which contributed to the phase inversion. Furthermore, formation of reverse micelles under high-speed dispersion may be a hypothesis to explain the incomplete phase inversion phenomenon.  相似文献   

17.
Factors that affect the phase-inversion temperature (PIT) based on nonionic surfactant fatty alcohol ethoxylates were investigated. Phase-inversion process was continuously monitored by determining changes in conductivity with temperature. The influences of oil-to-water ratio, emulsifier concentration, emulsifier mixing ratio, sodium chloride, and oil types on the PIT of emulsions were investigated. Results showed that the PIT of the emulsions declined with increased oil-to-water ratio. Emulsifier concentration significantly affected the PIT temperature. High sodium chloride content suppressed phase inversion. A lower Brij72-to-Brij721 ratio corresponded to higher PIT. Different oils required different HLB numbers in the phase-inversion process.  相似文献   

18.
The objective was to analyze the microstructure, stability, and rheology of model emulsions prepared with distilled water, refined sunflower oil, and different Spans (20, 40, 60, and 80) as emulsifiers. The effects of the water content and Span 60 concentration were studied. The lowest water contents led to w/o emulsions, whereas higher percentages gave w/o/w emulsions. Microscopy analysis showed that w/o/w emulsions of higher water contents had a lower number of internal water droplets. W/o emulsions were destabilized by coalescence and sedimentation, whereas creaming was observed in unstable w/o/w emulsions. In the last ones, the creaming stability decreased with increasing water content and enhanced with higher Span 60 concentration; the same effect was observed in their viscoelasticity: They were from unstable liquids to stable gels. Solid Spans (40 and 60) produced more consistent w/o/w emulsions at low water contents and more stable systems at high water percentages in comparison with liquid Spans (20 and 80).  相似文献   

19.
W/O/W multiple emulsions are systems of potential interest in the oral administration of insulin. Although it has been shown that a single oral administration of insulin-loaded W/O/W multiple emulsion to diabetic rats led to the significant decrease of blood glucose levels (Silva Cunha et al., 1998, Int J Pharm 169:33), repeated administrations displayed unpleasant side effects such as diarrhoea and steatosis. These unwanted effects were attributed to the high oil concentration used for their preparation. In the present study, attention was focused on the reduction of oil concentration in the formulation of these systems and on the encapsulation of two different insulins. The physical properties and stability of the multiple emulsions over long periods of time were assessed by conductivity measurements, and granulometric and microscopic analyses. The encapsulation in the inner aqueous phase of two insulins, Umulin and Humalog, differing only by the transposition of one amino acid, had non-negligible effects on the formation and stability of W/O/W multiple emulsions. Both insulins were shown to improve the formation of the multiple emulsions. Circular dichroism studies and surface tension measurements evidenced the contribution of insulin conformation and surface properties in multiple emulsion formation and stability.  相似文献   

20.
Here, we investigate water-in-oil (W/O) emulsions that are stabilized by polystyrene latex particles with sulfate surface groups. The particles, which play the role of emulsifier, are initially contained in the disperse (water) phase. The existence of such emulsions formally contradicts the empirical Bancroft rule. Theoretical considerations predict that the drop diameter has to be inversely proportional to the particle concentration, but should be independent of the volume fraction of water. In addition, there should be a second emulsification regime, in which the drop diameter is determined by the input mechanical energy during the homogenization. The existence of these two regimes has been experimentally confirmed, and the obtained data agree well with the theoretical model. Stable W/O emulsions have been produced with hexadecane and tetradecane, while, in the case of more viscous and polar oils (soybean and silicone oil), the particles enter into the oily phase, and Pickering emulsions cannot be obtained. The formation of stable emulsions demands the presence of a relatively high concentration of electrolyte that lowers the electrostatic barrier to particle adsorption at the oil-water interface. Because the attachment of particles at the drop surfaces represents a kind of coagulation, it turns out that the Schulze-Hardy rule for the critical concentration of coagulation is applicable also to emulsification, which has been confirmed with suspensions containing Na(+), Mg(2+), and Al(3+) counterions. The increase of the particle and electrolyte concentrations and the decrease of the volume fraction of water are other factors that facilitate emulsification in the investigated system. To quantify the combined action of these factors, an experimental stability-instability diagram has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号