首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The complex compound of dithizone-Co(Ⅱ) was separated and concentrated from the aqueous phase to n-octanol by solvent sublation.From the analysis of the coalescence behavior of bubbles on water-organic interface,the conception of critical bubble radius was proposed,and the value of the critical bubble radius in the water-octanol system was obtained:1.196×10~(-3)m.The simulation of the mathematical model using CBR and experimental data is completed with perfect results,and the simulation of the mathematical model using CBR is very different with the classic one.The analytical results proved that the critical bubble radius should be adequately considered in mathematical model of solvent sublation.  相似文献   

2.
A theoretical analysis of the atomic force microscopy (AFM) approach–retract dynamic interaction between an air bubble and a hydrophilic silica plane was carried out based on the well-established Stokes–Reynolds–Young–Laplace model. An air bubble with different radii attached to the end of a cantilever approached the silica surface with different approach velocities in a 10?3?M KCl solution. Results showed that with increasing approach velocity (0.1, 1, and 10?µm/s), the repulsive force, flattened area of the film, and hydrodynamic suction force between the 100-µm bubble and the silica plane increased. The film continued thinning at the initial stages of bubble retraction because of the attractive hydrodynamic pressure. When the bubble size decreased, the influence of hydrodynamic pressure was less evident. The final film thickness before bubble retraction was similar to the theoretical equilibrium thickness when the Laplace pressure was equal to the disjoining pressure.  相似文献   

3.
While studying the operation of a rectangular bubble column in laboratory scale, it was observed that under certain circumstances tiny bubbles attach to larger bubbles without causing them to coalesce. In other words, bubbles with large diameters (d > 5 mm) swept tiny bubbles (d < 1 mm) in their way to the top of the column resulting in grapelike clusters of bubbles. This phenomenon was named “bubble bunch” by us and its effect on total gas holdup and interfacial area was discussed. Although it was found to have almost no affect on gas holdup, bubble bunch can increase the interfacial area up to 10% more than what is anticipated in the literature. The process of film thinning was modeled for this phenomenon and coalescence efficiency was calculated as a function of interfacial tension.   相似文献   

4.
Two perpendicular projections of rising bubbles were observed in counter-current downstream diverging flow. Evidently, the bubbles did not enter the boundary layer at the channel wall and a plug liquid flow assumption was acceptable in our experimental equipment. This confirmed that the experiment was appropriate for simulation of bubble rises in a quiescent liquid column. Recent data obtained by a high-speed camera permitted recording over a period of 60 s. Image analysis by a tailor-made program provided a time-series of quantities related to the position, size, and shape of bubbles. In addition to determination of the aspect ratio of the equivalent oblate ellipsoid, deviation from this shape was investigated in respect of the difference between the bubble’s centre of mass and the geometrical centre of bubble projection. Autocorrelation of the data indicated that the bubble inclination oscillated harmonically with a frequency of 5–10 Hz; cross correlation showed that the horizontal shift of the centre of mass, as well as the horizontal velocity, increased with increasing bubble inclination, and the vertical shift of the centre of mass increased with an increases in the absolute value of the bubble inclination. There is no significant phase shift in the oscillation of these quantities. The bulky bottom side of the bubbles is in accordance with the model of bubble oscillation induced by instability of the equilibrium of gravity and surface tension forces. The oscillation frequency dependence on surface forces (Eötvös number) is evident, while viscosity does not play a significant role in low-viscosity liquids. Therefore, vortex-shedding is more likely to be an effect of the oscillation and not its cause.  相似文献   

5.
Fermentation broth normally contains many extracellular enzymes of industrial interest. To separate such enzymes on-line could be useful in reducing the cost of recovery as well as in keeping their yield at a maximum level by minimizing enzyme degradation from broth proteases (either the desired enzymes or the proteases could be removed selectively or both removed together and then separated). Several large-scale separation methods are candidates for such on-line recovery such as ultrafiltration, precipitation, and two-phase partitioning. Another promising technique for on-line recovery is adsorptive bubble fractionation, the subject of this study. Bubble fractionation, like ultrafiltration, does not require contaminating additives and can complement ultrafiltration by preconcentrating the enzymes using the gases normally present in a fermentation process. A mixture of enzymes in an aqueous bubble solution can, in principle, be separated by adjusting the pH of that solution to the isoelectric point (pI) of each enzyme as long as the enzymes have different pIs. The model system investigated here is comprised of three enzyme separations and the problem is posed as the effect of pectinase (a charged enzyme) on the bubble fractionation of invertase (a relatively hydrophilic enzyme) from α-amylase (a relatively hydrophobic enzyme). The primary environmental variable studied, therefore, is the pH in the batch bubble fractionation column. Air was used as the carrier gas. This prototype mixture exemplifies an aerobic fungal fermentation process for producing enzymes. The enzyme concentration here is measured as total protein concentration by the Coomassie Blue (Bradford) solution method (1), both as a function of time and column position for each batch run. Since, from a previous study (2), it was found that invertase and α-amylase in a two-enzyme system can be partially separated in favor of one vs the other at two different pHs (pH 5.0 and 9.0) with significant separation ratios, emphasis is placed on the effect of pectinase at these pHs. In this study, the addition of pectinase reduced the total separation ratio of the α-amylase-invertase mixture at both pHs.  相似文献   

6.
A new approach to investigate free volume in atomistic simulation was devised. The atoms in the structure are represented by hard spheres. A phantom bubble is defined as an empty sphere, which contacts four or more hard spheres of atoms simultaneously in 3 dimensional space and does not overlap with any atom in the structure. Phantom bubbles are only allowed to overlap with other phantom bubbles. For the purpose of illustration, phantom bubbles were constructed in a fully atomistic structure. An amorphous polyethylene was prepared in a periodic box having the dimension of 28.2×28.2×28.2 Å at 293 K and a density of 0.83 g/cm3. There were two fully atomistic polymeric chains (each C400H802) in the box. All the atoms in the system were assumed to be hard spheres, usually with 89% of their van der Waals radii. Larger and smaller radii were also considered. The size distribution of phantom bubbles in this system was calculated and the bubbles had a median radius of 0.8 Å. Small changes in the radii used for the atoms have little effect on the shape of the distribution function.  相似文献   

7.
The Davies—Taylor equation is used to correlate the velocity of rise with the radius of curvature of circular-cap gas bubbles in liquid-fluidized bed  相似文献   

8.
The stable bubble domains generated by mixing 10% of chiral molecules into an azobenzene liquid crystal (LC)-doped nematic host can be optically controlled by a violet laser beam (415 nm). The photon-induced reversible trans–cis photo-isomerisation of azobenzene changes the helical twisting power (HTP) of LC mixtures in which the HTP of cis-azobenzene LC is lower than trans-azobenzene LC. Under the irradiation of an optical field (>20 mW cm???2), the helical pitch distance, which is inverted proportional to the HTP, increases and the bubble domains disappear. Immediate obstruction of laser light irradiation initiates cholesteric nucleation, merging of domains and the subsequent generation of stably dispersed bubble domains.  相似文献   

9.
The effect of aeration rate and agitation speed on β-carotene production from molasses by Blakeslea trispora in a stirred-tank fermentor and optimization of the production of the pigment in a bubble column reactor were investigated. In addition, a central composite design was employed to determine the maximum β-carotene concentration at optimum values for the process variables (aeration rate, sugar concentration, linoleic acid, kerosene). By image analysis of the morphology of the fungus, a quantitative characterization of the hyphae and zygospores formed was obtained. The hyphae were differentiated to intacthyphae, vacuolated hyphae, evacuated cells and degenerated hyphae. An increased proportion of zygospores was correlated to high β-carotene production. In the stirred-tank fermentor, the highest concentration of the carotenoid pigment (92.0 mg/L) was obtained at an aeration rate of 1.5 vvm and agitation speed of 60 rpm. In the bubble column reactor, the aeration rate and concentration of sugars, linoleic acid, kerosene, and antioxidant significantly affected the production of β-carotene. In all cases, the fit of the model was found to be good. Aeration rate, sugar concentration, linoleic acid, and kerosene had a strong positive linear effect on β-carotene concentration. Moreover, the concentration of the pigment was significantly influenced by the negative quadratic effects of the given variables and by their positive or negative interactions. Maximum β-carotene concentration (360.2 mg/L) was obtained in culture grown in molasses solution containing 5% (w/v) sugar supplemented with linoleic acid (37.59 g/L), kerosene (39.11 g/L), and antioxidant (1.0 g/L).  相似文献   

10.
In this paper, the transversal diffusion coefficient D perpendicular of CO2 dissolved molecules through the wall of a hydrated cellulose fiber was approached, from the liquid bulk diffusion coefficient of CO2 dissolved molecules modified by an obstruction factor. The porous network between the cellulose microfibrils of the fiber wall was assumed being saturated with liquid. We retrieved information from previous NMR experiments on the self-diffusion of water in cellulose fibers to reach an order of magnitude for the transversal diffusion coefficient of CO2 molecules through the fiber wall. A value of about D perpendicular approximately 0.2D0 was proposed, D0 being the diffusion coefficient of CO2 molecules in the liquid bulk. Because most of bubble nucleation sites in a glass poured with carbonated beverage are cellulose fibers cast off from paper or cloth which floated from the surrounding air, or remaining from the wiping process, this result directly applies to the kinetics of carbon dioxide bubble formation from champagne and sparkling wines. If the cellulose fiber wall was impermeable with regard to CO2 dissolved molecules, it was suggested that the kinetics of bubbling would be about three times less than it is.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号