首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nematic liquid crystals (LCs) are randomly dispersed material with random orientation order in polymer dispersed liquid crystal (PDLC) films. The LCs change their orientation from random to vertical as electric field is applied. This transformation of orientation order of nematic liquid crystals in the PDLC films is controlled by many factors operating simultaneously. For instance, some factors like the internal forces of attractions among the neighboring LC molecules, anchoring with polymeric matrix, ITO glass boundaries, and chemical structures of the materials are less studied. The learning of extent of vertical orientation of liquid crystal droplets in an electric field is essential to attain optimum electro optical properties of PDLCs. In this finding, bipolar and radial LCs droplets with random orientation have been observed in non-acrylic polymeric media. It is learned that with small increase of contents of external material, the extent of vertical orientation has been varied intensely. The extent of vertical orientation of LCs molecules increases as the contents of external non-acrylic polymeric material decreased. For this study, the orientations of LCs with respect to material type/contents, external applied force, and restoration of electric filed as hysteresis have been studied in details.  相似文献   

2.
Iniferter polymerization was employed to prepare polymer dispersed liquid crystal (PDLC) films and an additional photoinitiator was introduced to induce the phase separation of polymer matrices themselves on the process of preparing the PDLC. The effect of the polymerization kinetics and the resultant microphase-separated structures of polymer matrices on the electro-optical properties of PDLC films were studied. It was found that the bigger length scale of phase separation of polymer matrices induced strong light-scattering resulting in low ON-state transmittance. And faster polymerization kinetic induced higher threshold and saturation voltages.  相似文献   

3.
以Ar+激光器为光源, 采用虎红、 N-苯基甘氨酸、二季戊四醇羟基五丙烯酸酯和乙烯基吡咯烷酮分别作为光引发剂、共引发剂、预聚物和稀释剂, 与液晶材料TEB30A结合, 通过光聚合反应, 制备了聚合物分散液晶(PDLC), 用紫外光谱和荧光光谱对其反应机理进行了分析. 实验结果表明, PDLC是通过光引发剂吸收光子能量后与共引发剂相互作用, 形成自由基中间体并引发聚合反应, 使预聚物与液晶产生相分离形成的.  相似文献   

4.
In this letter, iniferter polymerization was employed to prepare polymer dispersed liquid crystal (PDLC) films. Polystyrene (PS) was prepared as a macro-iniferter (MI). With the addition of MI in PDLC films, poly(methyl acrylate)-b-polystyrene was prepared in situ and used as polymer matrix in photopolymerization induced phase separation (PIPS). A reduction in driving voltages and an improvement in the ON state transmittance were observed for the sample prepared with a small amount of MI; while a poor electro-optical performance was obtained for that without any MI. Moreover, molecular weight and refractive index of the polymer matrix could be easily adjusted by the concentration of MI, and the matrix seems to be a prospective material for the PDLC devices.  相似文献   

5.
Liquid crystals displays (LCDs) currently dominate the display market, wherein a wide viewing angle is considered as one of the most important characteristics. However, for LCDs with wide viewing angles, some private information inevitably becomes more visible; thus, an LCD with a switchable viewing angle has attracted greater interest. Here, we report a novel switchable viewing angle film that can make the viewing angle of an LCD electrically switchable between ±30° and ±60°, i.e. between an anti-peeping mode and a share mode, by 5.0 V is turned on and off, respectively. The response time necessary to change between the modes is in milliseconds. It is believed that it has potential applications in LCDs with high quality.  相似文献   

6.
When a mixture of liquid crystal (LC) and photo reactive monomer is irradiated by UV light, polymerization occurs and LC droplets form through phase separation, producing polymer dispersed LCs (PDLCs). Although size control of LC droplets and reduced amounts of LC in PDLC films are important in applications, precise size control of LC droplets at a low LC fraction has not yet been accomplished. In this study, the phase diagrams of the LC/initial monomer and the LC/polymer during polymerization were used to control LC droplet size at various LC fractions. Both the relative position of the sample in the initial phase diagram and the shift of the phase separation line during polymerization were shown to be important in determining the size of LC droplets. Our results are expected to provide a new strategy for precise size control of LC droplets especially at a low LC fraction range, which would be a great help for PDLC applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

7.
Phase diagrams for mixtures of liquid crystal (LC)/monomer with and without an external electrical field applied have been established using polarized light microscope (PLM).The (isotropic + nematic) coexistent phase region and (isotropic + isotropic) phase boundary of LC/monomer mixtures were observed to shift upward to higher temperatures when the external electrical field exists. It was found that the electrical field applied during the cross-linking polymerization has a significant influence on the phase diagrams for the LC/polymer mixtures by rendering the coexistent phase regions shift upward to higher temperatures. The influence of the external electrical field on the processes of the isotropic-isotropic phase separation and liquid crystal ordering in PDLC formation has also been investigated. The results revealed that both the processes could be highly accelerated by the electrical field.  相似文献   

8.
A polystyrene macro-iniferter was applied to control the alignment of liquid crystal molecules at the droplet wall of polymer dispersed liquid crystal (PDLC) films. The aspects of the alignment were monitored by observing the droplet in the PDLC film. With increasing the macro-iniferter polystyrene in the composition, the configuration of LC droplets changes from bipolar to radial. This is because the high concentration of the macro-iniferter polystyrene results in a small surface interaction between the LC and the polymer matrix, which favours the formation of radial configuration. The radial configuration was stable under our conditions. However, increasing the LC and the initiator concentrations resulted in the change from radial to bipolar.  相似文献   

9.
Uniformly oriented macroscopic monodomain of cholesteric blue phase liquid crystal has been realised by the influence of surface anchoring. Orientation of the lattice planes in surface-treated (ST) and non-surface-treated (NST) cell were analysed and compared by Kossel diagram technique. NST cell has revealed the green and blue domains corresponding to reflection from oriented (110) and (112) planes of the body-centred cubic lattice. However, in the ST cell only the lattice plane (110) oriented uniformly and tailored the macroscopic monodomain. Electric field driven reorientation of the (110) lattice plane was noticed in NST cell whereas for ST cell such reorientation was absent. Two distinct electric field-induced capacitive responses have been observed in the two different cells. In NST cell anomalous electrostriction was observed, whereas for ST cell normal electrostriction was observed. Interestingly, the capacitance has decreased with an increasing electric field for anomalous electrostriction in NST cell, whereas for normal electrostriction in ST cell it was increased with increasing the field. Such a capacitive change behaviour is explained by dielectric anisotropic change followed by the electric field induced elongation and contraction of the cubic unit cell along and perpendicular to the electric field.  相似文献   

10.
In this paper, polymer dispersed liquid crystals (PDLC) films with LC content as low as 40 wt% were prepared, and the electro‐optical properties were carefully investigated. To accomplish this, different (meth)acrylate copolymerizaiton monomers have been used. The electro‐optical properties and morphologies of the PDLC films were strongly influenced by the chemical structure of copolymerization monomers (hydroxypropyl methacrylate (HPMA), glycidyl methacrylate, hydroxypropyl acrylate) and their feed ratio. Lower driven voltage and higher contrast ratio were achieved when the PDLC films showed a morphology with suitably LC domain size. At high HPMA content, a thin polymer film was formed on the surface of PDLC samples, which is beneficial to decrease the total LC content in PDLC devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The different fluorinated liquid crystal (LC) molecules doped to E8 were used as LC component to prepare polymer dispersed liquid crystal (PDLC) films. The mass fraction of the LC mixture is fixed 50.0 wt%. Results indicate that doping 8.0 wt% fluorinated LC molecule ME3CP to E8 significantly reduced the driving voltage of the PDLC films, and the driving voltage reduced with the rise of mass fraction of ME3CP. Besides, the terminal flexible chain length of the fluorinated LC molecule influenced the LC mixture properties based on E8, such as the dielectric anisotropy, birefringence and viscosity of the LC mixture, and the morphology and the electro-optical properties of PDLC films were controlled not only by the physical properties of the LC mixture, but also by the terminal flexible chain length of the fluorinated LC molecule .  相似文献   

12.
ABSTRACT

In this paper, polymer dispersed liquid crystal (PDLC) films based on epoxy-mercaptan system were prepared by thermal-initiated polymerization. The effects of the liquid crystal (LC) content, the proportion and the functionality of epoxy monomers on the polymer structures and electro-optical properties of the as-made PDLC films were investigated systematically. It was found that the morphologies of the polymer matrix can be altered from polymer meshes to polymer balls by increasing the LC content as well as the functionality of epoxy monomers. Accordingly, the electro-optical properties could be regulated by the morphologies of polymer networks. Especially, the as-made PDLC films with homogeneous porous structures exhibited the optimal electro-optical properties. Consequently, this work offers a meaningful approach to control the microstructures and optimize the electro-optical properties of PDLC films, which indeed can form a wonderful footstone for the wide application of PDLC.  相似文献   

13.
ABSTRACT

As a typical class of electrically light-transmittance-switchable (ELTS) composites materials, polymer dispersed liquid crystal (PDLC) films have been widely used in displays, smart windows, light shutters, etc. However, the commercialised PDLC film still requires a comparatively high voltage to maintain its transparent state, leading to huge power consumption and even a potential safety risk. In this regard, we proposed a ‘heat followed UV’ stepwise polymerisation strategy for preparing a kind of ELTS film with a low driving voltage (~20.7 V) through constructing a coexistent system of polymer dispersed and polymer stabilised liquid crystal (PD&SLC). In this new PD&SLC system, vertically orientated polymer networks were formed within LC domains to induce the vertical alignment of LC, thereby reducing the driving voltage. Also, the as-made PD&SLC film exhibited good flexibility due to the high content of polymer. Moreover, the effects of the liquid crystalline polymerisable monomers content on the polymer morphologies as well as the electro-optical properties of the as-made PD&SLC films were elaborately investigated.  相似文献   

14.
The polymer dispersed nematic liquid crystal (LC) with the tilted surface anchoring has been studied. The droplet orientational structures with two point surface defects – boojums and the surface ring defect – are formed within the films. The director tilt angle α = 40° ± 4° at the droplet interface and LC surface anchoring strength Ws ~ 10–6 (J m?2) have been estimated. The bipolar axes within the studied droplets of oblate ellipsoidal form can be randomly oriented are oriented randomly relatively to the ellipsoid axes as opposed to the droplets with homeotropic and tangential anchoring.  相似文献   

15.
In order to study the droplet pattern and electro-optic (EO) behaviour of polymer dispersed liquid crystal (PDLC) with the addition of dye, dichroic polymer dispersed liquid crystal (DPDLC) films were prepared using a nematic liquid crystal (NLC), photo-curable polymer (NOA 65) and anthraquinone blue dichroic dye (B2), in equal ratio (1:1) of polymer and liquid crystal (LC) by polymerisation induced phase separation (PIPS) technique. Dichroic dye was taken in different concentration (wt./wt. ratio) as 0.0625%, 0.125%, 0.25%, 0.5% and 1% of the LC mixture in DPDLC films. Initially, in an open circuit when there is no proviso for external electric field (0 V), LC droplets in polymer matrix exhibited bipolar pattern, though on closing the circuit with the increase of electric field pattern of droplets starts changing, LC molecules align along the direction of applied electric field and aligned completely relatively at higher field (30 V), which illustrate vertical radial pattern. Further, results show that the DPDLC film containing 0.0625% dye concentration with consistent average droplet size ~4.30 μm, exhibits the best transmission at lower operating voltage.  相似文献   

16.
One outstanding feature of the polymer-stabilised blue phase (PSBP) is that it is unnecessary to form an alignment film, which requires a high-temperature baking process. Therefore, PSBPs may enable flexible liquid crystal displays (LCDs) on plastic substrates. In this study, polymer stabilisation of a blue phase (BP) on a single substrate was performed without using a conventional sandwich-type cell, and the electro-optical properties are demonstrated to be similar to those of a sandwich-type PSBP LCD cell. It was experimentally shown that the oxygen which inhibits radical polymerisation is required to be excluded in order to complete the polymer stabilisation in blue phase.  相似文献   

17.
One of the main objectives of the experiment was to achieve the vertical aligned (VA) effect. To accomplish this, we employed liquid crystal (LC)/photo‐curable acrylic monomers mixture systems to prepare vertical alignment copolymer film (VACOF) for LC molecules with the photo‐polymerization induce phase separation (PIPS) process. From previous experimental results, we successfully fabricated LC devices without the micro‐protrusion structure. After the application of a saturated voltage, the LC molecules actually exhibited such interesting phenomena as uniaxial orientation, uniform single‐domain display state, etc. In this study, to obtain VACOF with smooth surface, we similarly controlled appropriate experimental conditions such as UV light exposure intensity and curing temperature, and altered process parameters such as the cell thickness, chemical structure length of the main chain type biphenol acrylic monomer [to simulate the main chain function of the traditional vertical alignment type polyimide (PI)], etc. During the experiment, we discovered that regardless of the cell thickness, this photo‐alignment system would yield the VACOF instead of the polymer disperse liquid crystal (PDLC) film morphology. Another notable finding was that the contrast ratio was heavily influenced by the length of the main chain type acrylic monomer structure for LC/monomer mixture systems, with enhancement of up to ~56%. Therefore, we further investigated the display effects, electro‐optical properties, etc. for these two main chain type acrylic monomer systems with different lengths and cell thicknesses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The optimised structures of blue-phase liquid crystal display (BPLCD) with various protrusions were discussed in this article. The voltage-dependent transmittances for the cell with four protrusion shapes, wall-shaped electrode, trapezoid electrode, double penetration electrode and elliptical electrode, are simulated. The electrode gap and width and protrusion height’s effects on the optimised cell gap and the corresponding operating voltage are calculated. The optimised cell has the lowest operating voltage and relative high transmittance. The results are significant on design BPLCD with low operating voltage.  相似文献   

19.
Three novel techniques of polymer dispersed liquid crystal (PDLC) film preparation have been proposed to obtain/induce systematically varying manifold properties in a single device. These three techniques were used to prepare ‘wedge-shaped’, ‘multi-channelled’ and ‘grating type’ PDLC films. Arrangement and configuration of liquid crystal (LC) microstructures inside these PDLC films, which were conveniently divided into different zones, have been investigated using a polarising optical microscope (POM) and scanning electron microscope (SEM). POM images indicate a predominant bipolar structure in all zones of different types of PDLC films but with varying size and density. Further, the electro-optical (EO) properties of PDLC films for different zones have different morphological characteristics as indicated (observed) in POM and SEM images and were dependent on LC droplet shape, size and distribution. Also different zones show different absorbance/transmittance characteristics in the visible range. Thus, our study proposes a single device with manifold properties. Also, the desired properties can be obtained by selecting the suitable zone from the PDLC composite film.  相似文献   

20.
Cheng-Kai Liu 《Liquid crystals》2017,44(7):1116-1123
This study proposes the concept of power consumption saving in transflective liquid-crystal displays (TR-LCDs). This concept is based on the design of a TR-LCD with three different display modes, namely, transmissive (T), reflective (R) and transflective (TR). Among the three, the TR mode is most often used to operate the designed LCD. To conserve power and extend the battery life, the designed LCD can be switched to operate in T/R mode in an environment with dim/stable ambient light. The highest operation voltages of both T and R modes are less than half of that of the TR mode. Moreover, the strong and weak surface anchoring energies that affect TR-LCD performance and the various pretilt angles of LCs are discussed. Moreover, the operating voltage (3.7 V) to obtain the good dark state of the three modes is independent of the errors of cell gap fabrication and surface anchoring energy, and temperature effect. The concept can be applied to portable electronic gadgets in which power consumption is an important issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号