首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of five dinuclear carbonyl complexes [(η 5-C5Me4R)Mo(CO)3]2 [R = allyl, n Bu, t Bu, Ph, Bz] with I2 in chloroform solution gave the corresponding mononuclear substituted tetramethylcyclopentadienyl molybdenum carbonyl complexes [(η 5-C5Me4R)MoI(CO)3] [R = allyl (1), n Bu (2), t Bu (3), Ph (4), Bz (5)]. The molecular structures of complexes 2, 3 and 5 were determined by X-ray diffraction analysis. The results show that the substituent in the ring can directly affect the Mo–I bond distances; the more sterically hindered the substituent, the longer the Mo–I bond. Friedel–Crafts reactions of aromatic compounds with a variety of alkylation reagents catalyzed by the complexes showed that all of these mononuclear molybdenum carbonyl complexes have catalytic activity in Friedel–Crafts alkylation reactions. Indeed, compared with traditional catalysts, these mononuclear metal carbonyl complexes have obvious advantages such as higher activities, mild reaction conditions, high selectivity, simple post-processing, and environmentally friendly chemistry.  相似文献   

2.
Thermal treatment of the substituted tetramethylcyclopentadienes [C5Me4HR] [R?=?n-propyl (1), i-propyl (2), cyclopentyl (3), cyclohexyl (4), and 4-NMe2Ph (5)] with Fe(CO)5 gave five new substituted tetramethylcyclopentadienyl dinuclear iron carbonyl complexes, [η5-C5Me4CH2CH2CH3]2Fe2(CO)4 (6), [η5-C5Me4CH(CH3)2]2Fe2(CO)4 (7), [η5-C5Me4CH(CH2)4]2Fe2(CO)4 (8), [η5-C5Me4CH(CH2)5]2Fe2(CO)4 (9), and [(η5-C5Me4)(4-NMe2Ph)]2Fe2(CO)4 (10). The new complexes were characterized by elemental analysis, IR, and 1H NMR spectra. The molecular structures of 6, 8, 9, and 10 were determined by X-ray single crystal diffraction.  相似文献   

3.
A series of six alkyl-substituted tetramethylcyclopentadienyl mononuclear metal carbonyl complexes [(η 5-C5Me4R)Re(CO)3] [R = allyl (1), i-Pr (2), n-butyl (3), t-butyl (4), benzyl (5), CH(CH2)4 (6)] have been synthesized by treating the corresponding ligands (C5Me4R) [R = allyl, i-Pr, n-butyl, t-butyl, benzyl, CH(CH2)4] with Re2(CO)10 in refluxing xylene. The six new complexes were characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The crystal structures of all six complexes were determined by X-ray crystal diffraction analysis, showing that they have similar molecular structures, being mononuclear carbonyl complexes. In each of these complexes, the Re atom is η 5 -coordinated to the cyclopentadienyl ring. Complexes 15 have significant catalytic activity in Friedel–Crafts reactions of aromatic compounds with alkylation reagents. Compared with traditional catalysts, these mononuclear rhenium carbonyl complexes have obvious advantages such as lower amounts of catalyst, mild reaction conditions and environmentally friendly chemistry.  相似文献   

4.
Reactions of the substituted tetramethylcyclopentadienes [C5HMe4R] [R =  t Bu, Ph, CH2CH2C(CH3)3] with Mo(CO)3(CH3CN)3 in refluxing xylene gave a series of dinuclear molybdenum carbonyl complexes [(η5-C5Me4R)Mo(CO)3]2 [R =  t Bu (1), Ph (2), CH2CH2C(CH3)3 (3)], [(η5-C5Me t Bu)Mo(μ-CO)2]2 (4)], and [(η5-C5Me4) t Bu]2Mo2O4(μ-O) (5)], respectively. Complexes 15 were characterized by elemental analysis, IR, 1H NMR, and 13C NMR spectroscopy. In addition, their crystal structures were determined by X-ray crystal diffraction analysis. The catalytic activities of complexes 13 in Friedel–Crafts acylation in the presence of o-chloranil has also been investigated; the reactions were achieved under mild conditions to give the corresponding products in moderate yields.  相似文献   

5.
We report the synthesis of some heterobimetallic carbonyl clusters of groups 8 and 9 derived from diethynylsilane and diethynyldisilane ligands. The triosmium carbonyl clusters containing a pendant acetylene unit [(μ-CO)Os3(CO)932-HC≡C-E-C≡CH)] [E = Si(CH3)2, Si(CH3)2–Si(CH3)2 and SiPh2] were prepared and subsequently used for mixed-metal cluster formation. New diyne complexes of the type [{(μ-CO)Os3(CO)9}{Co2(CO)6}(μ322-diyne)] and [{(μ-CO)Os3(CO)9}{(μ-H)Ru3(CO)9}(μ3232, η2-diyne)] [diyne = HC≡CSi(CH3)2C≡CH, HC≡CSi(CH3)2–Si(CH3)2C≡CH or HC≡CSi(Ph)2C≡CH] have been prepared in good yields from the reaction of [(μ-CO)Os3(CO)932-HC≡C-E-C≡CH)] with a molar equivalent of [Co2(CO)8] and [Ru3(CO)12], respectively. All the new heterobimetallic compounds have been characterized by IR and 1H NMR spectroscopy and mass spectrometry. The X-ray crystal structures and computational analyses based on density functional theory of these three molecules have been studied. Structurally, the dicobalt species adopts a pseudo-tetrahedral Co2C2 core with the alkyne bond which lies essentially perpendicular to the Co–Co vector. For the mixed osmium–ruthenium analogue, the hexanuclear carbonyl cluster consist of two trinuclear metal cores with the μ3-(η2-||) bonding mode for the acetylene group in the former case and the μ32, η2 bonding mode in the latter one.  相似文献   

6.
Thermal treatment of three monobridged biscyclopentadienes (C5H5)R(C5H5) [R = C(CH3)2 (1), C(CH2)5 (2), Si(CH3)2 (3)] with Re2(CO)10 in refluxing mesitylene gave the corresponding complexes [(η 5-C5H4)2R][Re(CO)3]2 [R = C(CH3)2 (4), C(C5H10) (5), Si(CH3)2 (6)], which were separated by chromatography, and characterized by elemental analysis, IR, and 1H NMR spectroscopy. The molecular structures of complexes 5 and 6 were characterized by X-ray crystal diffraction analysis and show that both are monobridged bis(cyclopentadienyl)rhenium carbonyl complexes in which the molecule consists of two [(η 5-C5H4)Re(CO)3] moieties linked by a single bridge, in which each of the two Re(CO)3 units is coordinated to the cyclopentadienyl ring in an η 5 mode. All three of these monobridged bis(cyclopentadienyl)rhenium carbonyl complexes have good catalytic activities in Friedel–Crafts alkylation reactions.  相似文献   

7.
0 IntroductionIn recent years, silver carboxylates have attractedmany interests, mostly because they are promisingcandidates in the growth of metal thin films via metal-organic chemical vapor deposition (MOCVD) tech-niques. These sliver compounds show low light sensi-tivity and relatively high thermal stability. Several ex-amples of bisphosphine ligands coordinated silver car-boxlylates have been reported[1 ̄4].Monophosphine coordinated silver complexes areexpected to have better volatility,…  相似文献   

8.
In this study, four ferrocenyl indenyl derivatives, C9H7–C≡C–Fc (1), C9H7–C≡C–Ph–Fc (2), C9H7–C≡C–Ph–C≡C–Fc (3), and C9H7–Ph–C≡C–Fc (4) (where C9H7=indenyl; Fc=C5H5FeC5H4; Ph=C6H5), have been synthesized by Sonogashira and Suzuki cross-coupling reactions and characterized by elemental analysis, and FT-IR, 1H, 13C-NMR, and MS spectroscopic methods, respectively. The molecular structures of 1, 2, and 4 were determined by X-ray single crystal diffraction. Two molecules appeared in the crystal structure of 4, and they interact through an intermolecular hydrogen bond. The electrochemical redox potential differences in 1–4 were investigated using cyclic voltammetry and calculations.  相似文献   

9.
Two series of 5-trichloromethylisoxazoles were synthesized from the cyclocondensation of 1,1,1-trichloro-4-methoxy-3-alken-2-ones [Cl3CC(O)C(R2) = C(R1)OMe, where R1 = H, Me, Et, Pr, iso-Pr, cyclo-Pr, Bu, terc-Bu, CH2Br, CHBr2, CH(Me)SMe, (CH2)2Ph, and Ph, and R2 = H; R1 = H and R2 = Me and Et; R1 and R2 = -(CH2)4- and -(CH2)5-; and R1 = Et and Ph and R2 = Me] with hydroxylamine hydrochloride through a rapid one-pot reaction in water. The 5-trichloromethyl-4,5-dihydroisoxazoles were aromatized by reaction with concentrated sulfuric acid to obtain the respective 5-trichloromethylisoxazoles. Their structures were confirmed by elemental analysis, 1H/13C nuclear magnetic resonance, and electron impact mass spectroscopy. Crystal structure analysis for 5-triclhoromethyl-5-hydroxy-3-propyl-4,5-dihydroisoxazole (2d) and 5-trichloromethyl-5-hydroxy-3,4-hexamethylene-4,5-dihydroisoxazole (2o) is presented. The antimicrobial activities of the 5-trichloromethyl-4,5-dihydroisoxazole derivatives were examined using the standard twofold dilution method against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and yeasts (Candida spp. and Cryptococcus neoformans). All of the tested 5-trichloromethyldihydroisoxazoles exhibited antibacterial and antifungal activities at the tested concentrations.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   

10.
Abstract

The hydrolysis of some N,N-dibenzylalkanesulfinamides (RSONH(CH2Ph)2; 1, R = Me; 2, R = iPr; 3, R = tBu; 4, R = 1-adamantyl) has been studied in 50% (v:v) acetonitrile–water solutions of hydrobromic and hydrochloric acids, mainly at 44.8 °C, using ultraviolet (UV) spectrophotometry to determine pseudo first-order rate constants. The compounds were found to hydrolyze by concurrent bimolecular neutral, acid-catalyzed, and acid-dependent nucleophilic (halide ion) catalysis pathways. The last-named is predominant in reactions in HBr solutions, but in HCl solutions, the acid-catalyzed pathway is predominant. The results indicate that both steric and electronic effects are important in these reactions. There appears to be no mechanistic switchover in the series 14.  相似文献   

11.
The reaction of [(η5-C9H7)Ru(η2-dppe)Cl] (1) with monodentate nitriles, (L) in the presence of NH4PF6 afforded the complexes [(η5-C9H7)Ru(η2-dppe)(L)]PF6, with L?=?CH3CN (2a), CH3CH=CHCN (2b), NCC6H4CN (2c), C6H5CH2CN (2d), respectively. However, reaction of 1 with NH4PF6 in methanol yielded an amine complex of the type [(η5-C9H7) Ru(η2-dppe)(NH3)]PF6 (3a). The complexes were fully characterized by spectroscopy and analytical data. The molecular structures of the complexes [(η5-C9H7)Ru(η2-dppe) (CH3CN)]PF6 (2a) and [(η5-C9H7)Ru(η2-dppe)(NH3)]PF6 (3a) have been determined by single crystal X-ray analyses.  相似文献   

12.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

13.
The synthesis of new tripodal nitrogen ligands derived from tris(pyrazolyl)methane (TpmR, R = H, tBu, Ph in 3‐position) is described. After deprotonation of the parent tris(pyrazolyl)methane TpmR, the carbanion reacts readily with ethylene oxide to yield the 3,3,3‐tris(3′‐substituted pyrazolyl)propanol ligands[(3‐Rpz)3CCH2CH2OH, R = H, tBu, Ph, 1a – c ]. These ligands can be easily derivatised at the alcohol function. Microwave‐assisted reactions of these ligands and [Re(CO)5Br] yields the complex [( 1a )Re(CO)3]Br ( 4 ) in the case of ligand 1a , whereas in the case of the substituted ligands 1b and 1c degradation was observed. The degradation products are identified as [(HpzR)2Re(CO)3Br] [R = tBu ( 7b ), Ph ( 7c )]. These complexes were also prepared directly from [Re(CO)5Br] and the corresponding pyrazoles by microwave‐assisted synthesis. The Re(CO)3 complexes 4 and [( 1a )Re(CO)3]OTf ( 5 ) are water‐soluble. The structures of 5· H2O and [{(pz)3CCH2CH3}Re(CO)3]OTf · 1.5H2O · 1/2CH3CN ( 6· 1.5H2O · 1/2CH3CN) as well as the structure of 7b have been elucidated by X‐ray crystallography.  相似文献   

14.
Homo- and heteronuclear bimetallic carbene complexes of group VII transition metals (Mn and Re), with cymantrene or cyclopentadienyl rhenium tricarbonyl as the starting synthon, have been synthesized according to classic Fischer methodology. Crystal structures of the carbene complexes with general formula [RC5H4 M'(CO)2{C(OEt)(C5H4 M(CO)3)}], where M = M′ = Mn, R = H (1), R = Me (2); M = Mn, M′ = Re, R = H (3); M = M′ = Re, R = H (4); and M = Re, M′ = Mn, R = H (5), are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the binuclear complexes. Application of second-order perturbation theory (SOPT) of the NBO method revealed stabilizing interactions between the methylene C–H bonds and the carbonyl ligands of the carbene metal moiety. Energy calculations in the gas phase of the cis and trans conformations of the Cp rings relative to one another are comparable, with the trans conformation slightly lower in energy. The theoretical findings have also been confirmed with single-crystal X-ray diffraction, and all solid-state structures are found in the trans geometry.  相似文献   

15.
Titanocene–bis(trimethylsilyl)ethyne complexes [Ti(η5-C5Me4R)22-Me3SiCCSiMe3)], where R=benzyl (Bz, 1a), phenyl (Ph, 1b) and p-fluorophenyl (FPh, 1c), thermolyse at 150–160°C to give products of double C---H activation [Ti(η5-C5Me4Bz){η34-C5Me3(CH2)(CHPh)}] (2a), [Ti(η5-C5Me4Bz){η34-C5Me2Bz(CH2)2}] (2a′), [Ti(η5-C5Me4Ph){η34-C5Me2Ph(CH2)2}] (2b), and [Ti(η5-C5Me4FPh){η34-C5Me2FPh(CH2)2}] (2c). In the presence of 2,2,7,7-tetramethylocta-3,5-diyne (TMOD) the thermolysis affords analogous doubly tucked-in compounds bearing one η34-allyldiene and one η5-C5Me4R ligand having TMOD attached by its C-3 and C-6 carbon atoms to the vicinal methylene groups adjacent to the substituent R (R=Bz (3a), Ph (3b), and FPh (3c)). Compound 3a is smoothly converted into air-stable titanocene dichloride [TiCl25-C5Me2Bz(CH2CH(t-Bu)CH=CHCH(t-Bu)CH2)}(η5-C5Me4Bz)] (4a) by a reaction with hydrogen chloride. Yields in both series of doubly tucked-in complexes decrease in the order of substituents: BzPh>FPh. Crystal structures of 1c, 2a, 2b, and 3b have been determined.  相似文献   

16.
Further investigations into the chemistry of the rhenacyclobutadiene complexes (CO)4Re(η2-C(R)C(CO2Me)C(X)) (1: R=Me, X=OEt (1a), O(CH2)3CCH (1b), NEt2 (1c); R=CHEt2, X=OEt (1d); R=Ph, X=OEt (1e)) are reported. Reactions of 1 with alkynes at reflux temperature of toluene and at ambient temperature either under photochemical conditions or in the presence of PdO yield ring-substituted η5-cyclopentadienylrhenium tricarbonyl complexes, 2. The symmetrical alkynes RCCR (R=Ph, Me, CO2Me) afford the pentasubstituted complexes (η5-C5(Me)(CO2Me)(OEt)(Ph)(Ph))Re(CO)3 (2d), (η5-C5(Me)(CO2Me)(OEt)(Me)(Me))Re(CO)3 (2e), (η5-C5(Me)(CO2Me)(OEt)(CO2Me)(CO2Me))Re(CO)3 (2f), and (η5-C5(Me)(CO2Me)(NEt2)(CO2Me)(CO2Me))Re(CO)3 (2i) on reaction with the appropriate 1, whereas the unsymmetrical alkynes RCCR″ (R=Ph; R″=H, Me) give either only one, (η5-C5(Me)(CO2Me)(OEt)(Ph)H)Re(CO)3 (2a)), or both, (η5-C5(Me)(CO2Me) (OEt)(Ph)(Me))Re(CO)3 (2b) and (η5-C5(Me)(CO2Me)(OEt)(Me)(Ph))Re(CO)3 (2c), (η5-C5(Ph)(CO2Me)(OEt)(Ph)H)Re(CO)3 (2g) and (η5-C5(Ph)(CO2Me)(OEt)(H)(Ph))Re(CO)3 (2h), of the possible products of [3 + 2] cycloaddition of alkyne to η2-C(R)C(CO2Me)C(X). Thermolysis of (CO)4Re(η2-C(Me)C(CO2Me)C(O(CH2)3CCH)) (1b) containing a pendant alkynyl group proceeds to (η5-C5(Me)(CO2Me)(O(CH2)3)H)Re(CO)3 (2j), a η5-cyclopentadienyl-dihydropyran fused-ring product. Competition experiments showed that each of PhCCH and MeO2CCCCO2Me reacts faster than PhCCPh with 1a. The results with unsymmetrical alkynes are rationalized by steric properties of substituents at the CC and ReC bonds and by a preference of ReC(Me) over ReC(OEt) to undergo alkyne insertion. A mechanism is proposed that involves substitution of a trans CO by alkyne in 1, insertion of alkyne into ReC bond to give a rhenabenzene intermediate, and collapse of the latter to 2. Complexes 1a and 1d undergo rearrangement in MeCN at reflux temperature to give rhenafuran-like products, (CO)4Re(κ2-OC(OMe)C(CHCR2)C(OEt)) (R=H (3a) or Et (3b)). The reaction of 1d also proceeds in EtCN, PhCN, and t-BuCN at comparable temperature, but is slower (especially in t-BuCN) than in MeCN. In pyridine at reflux temperature, 1a undergoes a similar rearrangement, with CO substitution, to give (CO)3(py)Re(κ2-OC(OMe)C(CHCEt2)C(OEt)) (4). A mechanism is proposed for these reactions. The sulfonium ylides Me2SCHC(O)Ph and Me2SC(CN)2 (Me2SCRR) react with 1a in acetonitrile at reflux temperature by nucleophilic addition of the ylide to the ReC(Me) carbon, loss of Me2S, and rearrangement to a rhenafuran-type structure to yield (CO)4Re(κ2-OC(OMe)C(C(Me)CRR)C(OEt)) (R=H, R=C(O)Ph (5a); R=RCN (5b)). All new compounds were characterized by a combination of elemental analysis, mass spectrometry, and IR and NMR spectroscopy.  相似文献   

17.
The reaction of [Ru3(CO)12] (1), with indene in refluxing xylene affords [{(η5-C9H7)Ru(CO)2}2] (2), in high yield. An analogous reaction of 1 with 2-phenylindene affords the expected dinuclear complex [{(η5-C9H6Ph)Ru(CO)2}2] (5), and a heptaruthenium cluster [(C9H4Ph)Ru7(μ-H)(μ-CO)2(CO)16] (6). The indenyl ligand in compound 6 exhibits a novel bonding mode in which the benzenoid ring is μ41122 bound to the cluster. Refluxing 1 with bis-indenyl methane affords the dinuclear complex [Ru2(CO)4{μ-(η5-C9H6)2CH2}] (7), which reacts with iodine via Ru-Ru bond cleavage to give [Ru2I2(CO)4{(η5-C9H6)2CH2}] (8).  相似文献   

18.
A series of metal compounds (M = Al, Ti, W, and Zn) containing pyrrole‐imine ligands have been prepared and structurally characterized. The reactions of AlMe3 with one and three equivs of pyrrole‐imine ligand [C4H3NH‐(2‐CH=N? CH2Ph)] ( 1 ) generated aluminum compounds Al[C4H3N‐(2‐CH=N? CH2Ph)]Me2 ( 2 ) and Al[C4H3N‐(2‐CH=NCH2Ph)]3 ( 3 ), respectively, in relatively high yield. Reacting two equivs of 1 with Ti(OiPr)4, W(NHtBu)2(=NtBu)2, or ZnMe2 afforded Ti[C4H3N‐(2‐CH=NCH2Ph)]2(OiPr)2 ( 4 ), W[C4H3N‐(2‐CH=NCH2Ph)]2(=NtBu)2 ( 5 ), and Zn[C4H3N‐(2‐CH=NCH2Ph)]2 ( 6 ), respectively. All the compounds have been characterized by 1H and 13C NMR spectroscopy. Compounds 3 – 6 have also been characterized by single‐crystal X‐ray structural analysis. The biting angles of pyrrole‐imine ligand with metals decrease and their related M? Npyrrole and M? Nimine bond lengths increase in the order of 6 , 3 , 4 , and 5 .  相似文献   

19.
We have investigated the coordination of alkanide and alkynide anions to the coordinatively unsaturated aluminium atoms of the methylene‐bridged dialuminium compound R2Al‐CH2‐AlR2 [ 1 , R = CH(SiMe3)2]. Treatment of 1 with the corresponding lithium derivatives in the presence of a small excess of TMEN (TMEN = tetramethylethylenediamine) yielded mono‐adducts [M]+[R2Al‐CH2‐AlR2R'] [ 2a , M = Li(TMEN)2, R' = Me; 2b , M = Li(TMEN)2, R' = n‐Bu; 3a , M = Li(TMEN)2, R' = C≡C‐SiMe3; 3b , M = Li(TMEN)2, R' = C≡C‐t‐Bu; 3d , M = Li(DME)3, R' = C≡C‐Ph; 3e , M = Li(TMEN)2, R' = C≡C‐PPh2)] and bis‐adducts [Li(TMEN)2]+[LiCH2(AlR2R')2] [ 4a , R' = C≡C‐CH2‐NEt2; 4b , R' = C≡C‐t‐Bu]. In the solid state the mono‐adducts have clearly separated coordinatively saturated (coordination number four) and unsaturated aluminium atoms (coordination number three). In solution the groups R' show a fast exchange between both aluminium atoms as evident from the room temperature NMR spectra that showed in most cases equivalent CH(SiMe3)2 groups despite different coordination spheres of the metal atoms. Only 2b gave the expected splitting of resonances at ambient temperature, while cooling was required to prevent the dynamic process for 3a . The dialkynide 4a has a unique molecular structure with one of the lithium cations bonded to the α‐carbon atoms of the alkynido ligands and to the carbon atom of the methylene bridge which is five‐coordinate with a distorted trigonal bipyramidal coordination sphere.  相似文献   

20.
Abstract

The reactions of a variety of electrophiles with the N-silyl-P-trifluoroethoxyphosphoranimine anion Me3Sin°P(Me)(OCH2CF3)CH? 2 (1a), prepared by the deprotonation of the dimethyl precursor Me3SiN[dbnd]P(OCH2CF3)Me2 (1) with n-BuLi in Et2O at-78°C, were studied. Thus, treatment of 1a with alkyl halides, ethyl chloroformate, or bromine afforded the new N-silylphosphoranimine derivatives Me3SiN[dbnd]P(Me)(OCH2CF3)CH2R [2: R = Me, 3: R = CH2Ph, 4: R = CH[sbnd]CH2, 5: R = C(O)OEt, and 6: R = Br]. In another series, when 1a was allowed to react with various carbonyl compounds, 1,2-addition of the anion to the carbonyl group was observed. Quenching with Me3SiCl gave the O-silylated products Me3SiN[dbnd]P(Me)(OCH2CF3)CH2°C(OSiMe3)R1R2 [7: R 1 = R 2 = Me; 8: R 1 = Me, R 2 = Ph; 9: R1 = Me, R 2 = CH[sbnd]CH2; and 10: R 1 = H, R 2 = Ph]. Compounds 2–10 were obtained as distillable, thermally stable liquids and were characterized by NMR spectroscopy (1H, 13C, and 31P) and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号