首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘晓霞  丁利  刘锦霞  张莹  黄志强  王利兵  陈波 《色谱》2010,28(11):1020-1025
建立了食品中6种人工合成甜味剂(甜蜜素、糖精钠、安赛蜜、阿斯巴甜、阿力甜、纽甜)的高效液相色谱-串联质谱检测方法。样品经甲醇-水溶液(1:1, v/v)提取,以C18柱为分离柱,0.1%(v/v)甲酸-5 mmol/L甲酸铵溶液/乙腈为流动相,经高效液相色谱分离,采用电喷雾串联四极杆质谱进行检测。结果表明,6种人工合成甜味剂在20~500 μg/L范围内定量离子对的响应峰面积和样品质量浓度之间有良好的线性关系(相关系数>0.998)。在3个添加水平下,样品平均回收率为81.3%~106.0%,相对标准偏差小于11%。该方法简单、灵敏、准确,可用于食品中6种人工合成甜味剂的同时检测。  相似文献   

2.
嵇超  冯峰  陈正行  孙利  储晓刚 《色谱》2010,28(8):749-753
建立了测定葡萄酒中安赛蜜、糖精钠、甜蜜素、阿斯巴甜和纽甜等5种人工合成甜味剂的高效液相色谱-电喷雾电离串联质谱(HPLC-ESI MS/MS)分析方法。采用Ultimate C18色谱柱,对流动相的组成、柱温以及质谱的各种参数进行了优化和探讨。结果表明,以含0.1%(体积分数)甲酸的20 mmol/L甲酸铵缓冲液(pH 3.8)和甲醇为流动相,梯度洗脱,柱温为45 ℃下,可以在5 min内完成5种人工合成甜味剂的基线分离。在ESI负离子模式下,采用多反应监测模式进行测定时,安赛蜜、糖精钠、甜蜜素、阿斯巴甜和纽甜的检出限分别为0.6、5、1、0.8和0.2 μg/L,回收率为87.2%~103%,相对标准偏差不高于1.2%。该方法快捷、准确,灵敏度高,可用于葡萄酒及其他复杂基质食品中低剂量、复合甜味剂的测定。  相似文献   

3.
建立了高效液相色谱–四极杆飞行时间串联质谱快速检测饮料中糖精钠、甜蜜素、安赛蜜、阿斯巴甜、纽甜、三氯蔗糖6种人工合成甜味剂的方法。样品经水提取,采用C18色谱柱,以甲醇和0.1%甲酸–10 mmol/L甲酸铵溶液为流动相,梯度洗脱,四极杆飞行时间串联质谱电喷雾负离子模式检测。各化合物在0.02~2.0 mg/L范围内均呈现良好的线性关系,相关系数均大于0.998。样品平均添加回收率为63.0%~113.2%,测定结果的相对标准偏差均小于9.6%(n=5)。该方法简便快捷,选择性好,灵敏度高,可满足国内外现行法规的限量要求。  相似文献   

4.
Liu F  Wang Y  Wang Y  Zhou J  Yan C 《色谱》2012,30(3):292-297
建立了高效液相色谱-蒸发光散射检测仪(HPLC-ELSD)同时检测食品中安赛蜜、糖精钠、甜蜜素、三氯蔗糖和阿斯巴甜5种甜味剂的方法。甜味剂经0.1%(v/v)甲酸缓冲液提取后,利用C18固相萃取小柱净化浓缩,以3 μm C18柱为分离柱,0.1%(v/v)甲酸(氨水调节pH=3.5)-甲醇(61:39, v/v)为流动相,经高效液相色谱法分离,蒸发光散射检测器进行检测。结果表明,5种甜味剂在30~1000 mg/L的范围内,具有良好的线性关系(相关系数大于0.997);在3个添加水平下,样品的平均回收率为85.6%~109.0%,相对标准偏差小于4.0%;方法检出限(LOD,信噪比(S/N)=3)分别为安赛蜜2.5 mg/L、糖精钠3 mg/L、甜蜜素10 mg/L、三氯蔗糖2.5 mg/L及阿斯巴甜5 mg/L。该方法简单、灵敏、操作成本低,可用于不同形态食品中多种甜味剂的同时检测。  相似文献   

5.
A method for the simultaneous determination of seven commonly used artificial sweeteners in water is presented. The analytes were extracted by solid phase extraction using Bakerbond SDB 1 cartridges at pH 3 and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in negative ionization mode. Ionization was enhanced by post-column addition of the alkaline modifier Tris(hydroxymethyl)amino methane. Except for aspartame and neohesperidin dihydrochalcone, recoveries were higher than 75% in potable water with comparable results for surface water. Matrix effects due to reduced extraction yields in undiluted waste water were negligible for aspartame and neotame but considerable for the other compounds. The widespread distribution of acesulfame, saccharin, cyclamate, and sucralose in the aquatic environment could be proven. Concentrations in two influents of German sewage treatment plants (STPs) were up to 190 μg/L for cyclamate, about 40 μg/L for acesulfame and saccharin, and less than 1 μg/L for sucralose. Removal in the STPs was limited for acesulfame and sucralose and >94% for saccharin and cyclamate. The persistence of some artificial sweeteners during soil aquifer treatment was demonstrated and confirmed their environmental relevance. The use of sucralose and acesulfame as tracers for anthropogenic contamination is conceivable. In German surface waters, acesulfame was the predominant artificial sweetener with concentrations exceeding 2 μg/L. Other sweeteners were detected up to several hundred nanograms per liter in the order saccharin ≈ cyclamate > sucralose. Figure Some artificial sweeteners are excreted unchanged and in particular acesulfame is a perfect tracer for municipal waste water Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
In this paper, the separation and determination of four artificial sweeteners (aspartame, sodium cyclamate, acesulfame-K and sodium saccharin) by ion chromatography coupled with suppressed conductivity detector is reported. The four artificial sweeteners were separated using KOH eluent generator. Due to the use of eluent generator, very low conductance background conductivity can be obtained and sensitivity of sweeteners has been greatly improved. Under the experimental condition, several inorganic anions, such as F-, Cl-, NO3-, NO2-, Br-, SO4(2)-, PO4(3)- and some organic acid such as formate, acetate, benzoate, and citrate did not interfere with the determination. With this method, good linear relationship, sensitivity and reproducibility were obtained. Detection limits of aspartame, sodium cyclamate, acesulfame-K, sodium saccharin were 0.87, 0.032, 0.019, 0.045 mg/L, respectively. Rate of recovery were between 98.23 and 105.42%, 99.48 and 103.57%, 97.96 and 103.23%, 98.46 and 102.40%, respectively. The method has successfully applied to the determination of the four sweeteners in drinks and preserved fruits.  相似文献   

7.
稽超  孙艳艳  李秀琴  储晓刚  陈正行 《色谱》2009,27(1):111-113
建立了采用超高效液相色谱同时测定饮料中4种甜味剂(安赛蜜、糖精钠、甜味素、纽甜)的方法。样品经简单的预处理后,通过ACQUITY UPLCTM BEH C18色谱柱分离,以乙腈-20 mmol/L磷酸二氢钠水溶液为流动相进行梯度洗脱,于220 nm波长下紫外检测。一次进样分析仅需6 min。4种甜味剂在0.5~20.0 mg/L范围内的线性关系良好,在加标水平为1,10和20 mg/L时,被测物的回收率为80.5%~95.2%,相对标准偏差为0.50%~8.7%。  相似文献   

8.
唐吉旺  袁列江  肖泳  王秀  王淑霞 《色谱》2019,37(6):619-625
建立了固相萃取-高效液相色谱-串联质谱快速检测食品中安赛蜜、糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜、纽甜、甘素及新橙皮甙二氢查尔酮等9种人工合成甜味剂的方法。样品中的甜味剂经三乙胺缓冲溶液(pH 4.5)提取,采用亲水亲脂平衡填料固相萃取柱净化,经Phenomenex Knietex® F5色谱柱(100 mm×2.1 mm,2.6 μm)分离,以0.1%(v/v)甲酸-5 mmol/L甲酸铵溶液和甲醇为流动相,进行梯度洗脱,以电喷雾离子源正负离子切换多反应监测(MRM)模式进行质谱检测。采用内标法定量,进一步降低样品基质效应的影响。结果表明:本方法在去除样品基质干扰方面取得良好效果,9种甜味剂的检出限和定量限分别在2~30 μg/L和6~100 μg/L之间,在各自的线性范围内线性关系良好(相关系数r2>0.999)。9种甜味剂空白样品在3个水平下的加标回收率在86.3%~106.3%之间,相对标准偏差(RSD)在1.2%~5.9%之间。本方法快捷、高效、准确可靠,可用于复杂食品基质中9种人工合成甜味剂的快速检测。  相似文献   

9.
The objective of this paper is to provide information about application of solid-phase extraction (SPE) for isolation of nine high-intensity sweeteners (acesulfame-K, alitame, aspartame, cyclamate, dulcin, neotame, saccharin, sucralose and neohesperidin dihydrochalcone) from aqueous solutions. The influence of several types of LC-MS compatible buffers (different pH values and compositions) on their recovery has been studied and discussed. A number of commercially available SPE cartridges, such as Chromabond C18ec, Strata-X RP, Bakerbond Octadecyl, Bakerbond SDB-1, Bakerbond SPE Phenyl, Oasis HLB, LiChrolut RP-18, Supelclean LC-18, Discovery DSC-18 and Zorbax C18 were tested in order to evaluate their applicability for the isolation of analytes. Very high recoveries (better than 92%) of all studied compounds were obtained using formic acid-N,N-diisopropylethylamine buffer adjusted to pH 4.5 and C18-bonded silica sorbents. Behaviour of polymeric sorbents strongly depends on their structure. Strata-X RP behaves much like a C18-bonded silica sorbent. Recoveries obtained using Oasis HLB were comparable with those observed for silica-based sorbents. The only compound less efficiently (83%) retained by this sorbent was cyclamate. Bakerbond SDB-1 shows unusual selectivity towards aspartame and alitame. Recoveries of these two sweeteners were very low (26 and 42%, respectively). It was also found that aspartame and alitame can be selectively separated from the mixture of sweeteners using formic acid-triethylamine buffer at pH 3.5.  相似文献   

10.
建立了一种快速检测白酒、配制酒和葡萄酒中安赛蜜、糖精钠、阿斯巴甜、阿力甜及纽甜5种人工合成甜味剂的高效液相色谱分析方法。采用C_(18)柱为分离柱,对流动相的组成和洗脱方式、检测波长等参数进行优化。结果表明,以乙腈和0.02 mol/L硫酸铵(p H 4.4)溶液为流动相,梯度洗脱,柱温40℃,可使5种人工合成甜味剂在15 min内实现基线分离。最佳检测波长下,5种甜味剂在4~200 mg/L浓度范围内呈良好的线性关系,相关系数均大于0.999。样品加标回收率为95.2%~103.2%,相对标准偏差(n=5)均不大于3.4%。该方法简便、快捷、准确、灵敏度较高,适用于白酒、配制酒和葡萄酒等各类酒中5种人工合成甜味剂的快速检测。  相似文献   

11.
A partial least squares (PLS) Fourier transform Raman spectrometry procedure based on the measurement of solid samples contained inside standard glass vials, has been developed for direct and reagent-free determination of sodium saccharin and sodium cyclamate in table top sweeteners. A classical 22 design for standards was used for calibration, but this system provides accuracy errors higher than 13% w/w for the analysis of samples containing glucose monohydrate. So, an extended model incorporating glucose monohydrate (23 standards) was assayed for the determination of sodium saccharin and sodium cyclamate in all the samples. Mean centering spectra data pre-treatment has been employed to eliminate common spectral information and root mean square error of calibration (RMSEC) of 0.0064 and 0.0596 was obtained for sodium saccharin and sodium cyclamate, respectively. A mean accuracy error of the order of 1.1 and 1.9% w/w was achieved for sodium saccharin and sodium cyclamate, in the validation of the method using actual table top samples, being lower than those obtained using an external monoparametric calibration. FT-Raman provides a fast alternative to the chromatographic method for the determination of the sweeteners with a three times higher sampling throughput than that obtained in HPLC. On the other hand, FT-Raman offers an environmentally friendly methodology which eliminates the use of solvents. Furthermore, the stability of samples and standards into chromatographic standard glass vials allows their storage for future analysis thus avoiding completely the waste generation.  相似文献   

12.
建立了液相色谱-四级杆飞行时间串联质谱联用技术同时测定4种甜味剂(安赛蜜、糖精钠、甜蜜素、阿斯巴甜)及2种抗氧化剂(叔丁基对苯二酚、丁基羟基茴香醚)的方法.试验采用Extend-C18色谱柱分离与ESI(-)检测,以乙腈-1 mmol/L乙酸铵为流动相梯度洗脱,在6 min内实现6种目标物的快速分离,检测限为0.250 0~5.00 0 ng/m L,日间精密度小于10.71%(n=3),液态样品平均回收率为83.24%~118.3%.方法准确、灵敏,可快速检测食品中的甜味剂和抗氧化剂.  相似文献   

13.
High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K0, have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL−1 levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL−1 levels without extensive sample handling or preparation.  相似文献   

14.
An overview is given of existing trace analytical methods for the determination of seven popular artificial sweeteners [acesulfame (ACE), aspartame, cyclamate (CYC), neotame, neohesperidine dihydrochalcone, saccharin (SAC), and sucralose (SUC)] from aqueous environmental samples. Liquid chromatography-electrospray ionization tandem mass spectrometry and liquid chromatography-electrospray ionization high-resolution mass spectrometry are the methods most widely applied, either directly or after solid-phase extraction. Limits of detection and limits of quantification down to the low nanogram per liter range can be achieved. ACE, CYC, SAC, and SUC were detected in wastewater treatment plants in high microgram per liter concentrations. Per capita loads of individual sweeteners can vary within a wide range depending on their use in different countries. Whereas CYC and SAC are usually degraded by more than 90% during wastewater treatment, ACE and SUC pass through wastewater treatment plants mainly unchanged. This suggests their use as virtually perfect markers for the study of the impact of wastewater on source waters and drinking waters. In finished water of drinking water treatment plants using surface-water-influenced source water, ACE and SUC were detected in concentrations up to 7 and 2.4 μg/L, respectively. ACE was identified as a precursor of oxidation byproducts during ozonation, resulting in an aldehyde intermediate and acetic acid. Although the concentrations of ACE and SUC are among the highest measured for anthropogenic trace pollutants found in surface water, groundwater, and drinking water, the levels are at least three orders of magnitude lower than organoleptic threshold values. However, ecotoxicology studies are scarce and have focused on SUC. Thus, further research is needed both on identification of transformation products and on the ecotoxicological impact of artificial sweeteners and their transformation products.  相似文献   

15.
高效离子排斥色谱法测定饮料中的糖精钠   总被引:3,自引:0,他引:3  
提出了一种用高效离子排斥色谱法测定饮料中糖精钠的新方法。以IonPac ICE-AS 6柱为分离柱,0.10 mmol/LH2SO4+甲醇(9+1)为淋洗液,202nm波长下紫外检测。在1-100mg/L范围内,糖精钠的含量与峰面积呈 良好线性关系。检出限为0.60ng,灵敏度优于以往采用离子交换色谱-电导检测法的结果。在实验条件下,饮料 中常见有机酸以及其它人工合成甜味剂等均不产生干扰。方法用于饮料中糖精钠的测定,加标回收率为98%~ 105%。此外还比较了电导检测、紫外检测和经化学抑制系统后紫外检测等三种检测方式对测定灵敏度的影响。  相似文献   

16.
A micellar electrokinetic capillary method for the simultaneous determination of the sweeteners dulcin, aspartame, saccharin, and acesulfame-K and the preservatives sorbic acid; benzoic acid; sodium dehydroacetate; and methyl-, ethyl-, propyl-, isopropyl-, butyl-, and isobutyl-p-hydroxybenzoate in preserved fruits is developed. These additives are ion-paired and extracted using sonication followed by solid-phase extraction from the sample. Separation is achieved using a 57-cm fused-silica capillary with a buffer comprised of 0.05 M sodium deoxycholate, 0.02 M borate-phosphate buffer (pH 8.6), and 5% acetonitrile, and the wavelength for detection is 214 nm. The average recovery rate for all sweeteners and preservatives is approximately 90% with good reproducibility, and the detection limits range from 10 to 25 microg/g. Fifty preserved fruit samples are analyzed for the content of sweeteners and preservatives. The sweeteners found in 28 samples was aspartame (0.17-11.59 g/kg) or saccharin (0.09-5.64 g/kg). Benzoic acid (0.02-1.72 g/kg) and sorbic acid (0.27-1.15 g/kg) were found as preservatives in 29 samples.  相似文献   

17.
A new method for saccharin determination in liquid sweetener products was developed. The method is based on the precipitation reaction of Ag(I) ions with saccharin in aqueous medium (pH 3.0), using a flow injection analysis system with merging zones, the suspension was stabilized with 5 g L−1 Triton X-100. All experimental parameters influencing the flow injection system were optimized by means of chemometric approaches. The linear analytical curve was built from 2.4 g L−1 up to 9.64 g L−1 (r = 0.9968) with a quantification limit of 2.40 g L−1. The precision assessed as relative standard deviation (n = 10) was found to be 1.75 % for the saccharin concentration of 7.20 g L−1. Based on interference studies performed with the substances commonly found in liquid sweeteners, such as sodium cyclamate, methylparaben, sodium aspartame, and benzoic and citric acids, at the analyte to interferent mole ratio of up to 1: 10, no interference with the saccharin determination was observed. The presence of chloride ions interferes with the method, but a preceding liquid-liquid saccharin extraction with ethyl acetate was successfully employed to overcome this drawback. Accuracy of the method in sweetener products was evaluated by a comparison with the HPLC method.  相似文献   

18.
磺胺类人工合成甜味剂的毛细管电泳/电导法分离检测   总被引:3,自引:0,他引:3  
采用15 mmol/L Tris-10 mmol/L H3BO3-0.2 mmol/L EDTA为电泳运行液,0.2%四乙烯五胺为电渗流抑制剂,融硅石英毛细管(45 cm×50 μm),负高压分离(-15 kV),柱端接触式电导检测,建立了磺胺类人工合成甜味剂(糖精钠、安赛蜜、甜蜜素)的高效毛细管电泳/电导法分离检测方法.糖精钠、安赛蜜、甜蜜素的线性检测范围分别为0.8 ~120、1.1 ~120、1.5 ~120 μmol/L,检出限分别为0.3、0.4、0.6 μmol/L.详细讨论了电泳运行液的组成、浓度以及进样方式对灵敏度和分离度的影响.该法用于市售饮料中3种甜味剂的分离检测,结果满意.  相似文献   

19.
A high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) has been developed for the simultaneous determination of multiple sweeteners, i.e., acesulfame-K, alitame, aspartame, cyclamic acid, dulcin, neotame, neohesperidine dihydrochalcone, saccharin and sucralose in carbonated and non-carbonated soft drinks, canned or bottled fruits and yoghurt. The procedure involves an extraction of the nine sweeteners with a buffer solution, sample clean-up using solid-phase extraction cartridges followed by an HPLC-ELSD analysis. The trueness of the method was satisfactory with recoveries ranging from 93 to 109% for concentration levels around the maximum usable dosages for authorised sweeteners and from 100 to 112% for unauthorised compounds at concentration levels close to the limit of quantification (LOQs). Precision measures showed mean repeatability values of <4% (expressed as relative standard deviation) for highly concentrated samples and <5% at concentration levels close to the LOQs. Intermediate precision was in most cases <8%. The limits of detection (LODs) were below 15 microg g(-1) and the LOQs below 30 microg g(-1) in all three matrices. Only dulcin showed slightly higher values, i.e., LODs around 30 microg g(-1) and LOQs around 50 microg g(-1)  相似文献   

20.
乳及乳制品中多种防腐剂和甜味剂的同时测定   总被引:3,自引:0,他引:3  
宋戈  姜金斗  张秋梅 《色谱》2010,28(3):323-326
建立了高效液相色谱法同时测定乳及乳制品中安赛蜜、苯甲酸、糖精钠、山梨酸和阿斯巴甜的方法。通过加入适量沉淀剂除去样品中绝大部分蛋白质后,采用C18色谱柱分离,以甲醇-0.05 mol/L磷酸二氢钾溶液为流动相梯度洗脱,用二极管阵列检测器于230 nm波长处检测安赛蜜、苯甲酸和山梨酸,于210 nm波长处检测糖精钠和阿斯巴甜。被测物的回收率为96.0%~103.5%,精密度(以相对标准偏差(RSD)计)为1.93%~2.76%,安赛蜜、苯甲酸、糖精钠、山梨酸和阿斯巴甜的检出限分别为1.0, 1.0, 0.5, 1.0, 1.5 μg/g。该方法可用于乳及乳制品中这5种添加剂的同时测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号