首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Binding of alkali metal cations (AMCs) by 1,3-alternate, ionised calix[4]arene-benzocrown-6 ligands was investigated by isothermal calorimetric titration in methanol. The groups of –C(O)NHSO2CH3 and more acidic –C(O)NHSO2CF3 were attached to the 1,3-alternate calix[4]arene-benzocrown-6 skeleton in two locations. In one series, the acidic group was attached to the para position of one aromatic ring in the calixarene framework, thereby positioning it over the polyether cavity. In the other series, the ionisable group was a substituent on the benzo group in the polyether ring. This oriented the acidic group away from the crown ether cavity. For these calixcrown ligands, the effects of the location of the ionisable group and its acidity and the identity of the AMC on the binding constant, enthalpy and entropy of complexation are assessed.  相似文献   

2.
The object of the present study is to examine the factors governing the process of 18C6 complexation in aqueous solution by interpreting of thermodynamic parameters of the reaction in terms of observed selectivity and solvation characteristics under various temperature conditions.  相似文献   

3.
2-Methylresorcinarene and its methylene-bridged cavitand derivative as host compounds were investigated in selective complexation of alkali metal ions as guests in methanol media by photoluminescence measurements. These host molecules possess either flexible (2-methylresorcinarene) or rigid (cavitand) molecular skeleton. The Benesi–Hildebrand method and the van't Hoff theory have been applied to determine the stability constants and the thermodynamic parameters, respectively. Considerable interactions between 2-methylresorcinarene and Li+ or Na+ ions have been observed while the rigid cavitand derivative can interact only with K+ or Cs+ ions. Neither the complexes of 2-methylresorcinarene with K+ or Cs+ nor those of the cavitand derivative with Li+ or Na+ ions are stable at room temperature in methanol media. Quantum-chemical investigations justified that only solvated Li+ and Na+ ions can form stable complexes with 2-methylresorcinarene while unsolvated K+ and Cs+ ions form stable complexes with the methylene-bridged cavitand. These results highlight that the stability of the guest solvation shell and its size could play a key role in the selectivity behaviour of host molecules.  相似文献   

4.
Formation constants (K ML) of 1:1 complexes of 15-(2,5-dioxahexyl)-15-methyl-16-crown-5 (L16C5) and 15,15-dimethyl-16-crown-5 (DM16C5) with alkali metal ions were determined in acetonitrile (AN) and propylene carbonate (PC) by conductometry at 25°C. Except for the case of Li+-and K+-16C5 complexes in PC, the selectivity sequences of L16C5 and DM16C5 are identical with those of the parent crown ether 16-crown-5 (16C5) regardless of the solvent (AN, PC, methanol) (Na1 > Li+ > K+ > Rb+ > Cs+), which show the size-fit correlation. The selectivities of L16C5 and DM16C5 for the alkali metal ions are governed not by the sidearms but by the cavity size. The stability of the crown ether complex is dependent not on the dielectric constant but largely on the donor number of the solvent. TheK ML(M1 +)/K ML(M2 +) ratio of L16C5 or 16C5 varies very much with the solvent in the cases of M1=Na, M2=K and M1=Na, M2=Li, but that of DM16C5 is almost constant regardless of the solvent.  相似文献   

5.
In this study, calix[4]arene derivatives (1114) bearing a single nucleobase (adenine, thymine, cytosine or guanine) were synthesised via click chemistry. The complexation ability of the synthesised derivatives with alkali metal ions was measured using MALDI-TOF mass spectrometry, and their molecular assembly in CDCl3 was determined using 1H NMR. Calix[4]arene derivatives (1114) formed 1:1 complexes with all alkali metal ions and the rank order for the complexation selectivity was Rb+ > Cs+ > K+ ? Na+ > Li+. The attachment of nucleobase at the upper rim of calix[4]arene had little effect on its complexation selectivity for alkali metal ions. Thymine-, adenine- and guanine-calix[4]arenes formed self-assembled structures in CDCl3 via base–base interactions. In addition, adenine-calix[4]arene (11) bound to thymine-calix[4]arene (12) to form a discrete species via Hoogsteen hydrogen bonding.  相似文献   

6.
Adsorption of SO2 and O3 molecules on pristine boron nitride (B12N12) and Ni-decorated B12N12 nano-cages has been systemically investigated through density functional theory (DFT) methods. Adsorption energies (thermodynamics), bond distances, charge analysis, dipole moments, orbital analysis and density of states are calculated by van der Waals DFT method (MPW1PW91) functional. The adsorption energies of O3 and SO2 on pristine B12N12 are about −143.8 and −14.0 kJ mol−1, respectively. The interaction energies of O3 and SO2 with pristine B12N12 are indicative of chemisorption and physisorption, respectively. Ni-decorated B12N12 (Ni@BN) enhances adsorption of both O3 and SO2 species. The interaction energies for adsorption of SO2 are about −166 and −277 kJ mol−1 whereas the corresponding energies for O3 are −362 and −396 kJ mol−1 for configuration A and B, respectively. These observations show that functionalized B12N12 are highly sensitive toward SO2 and O3 molecules.  相似文献   

7.
The cationization of poly(ethylene glycol)s, PEG 4000 and PEG 6000, under matrix-assisted laser desorption/ionization conditions was studied by using different concentration ratios of the sodium ion, as the reference ion, and another alkali metal ion (Li(+), K(+), Rb(+), Cs(+)). A linear correlation was found between the intensity ratio of the sodiated PEGs and PEGs cationized with alkali metal ions versus the initial concentration ratio of sodium and alkali metal ions. The slopes of these straight lines are proposed as a novel selectivity ratio for the ionization process. The intensity distribution of the cationized PEGs was also investigated. It was found that the cationized oligomers follow Poisson statistics. The M(n) and M(w) values were also evaluated. An explanation for the observed effects is given.  相似文献   

8.
The thermal decomposition of pure ammonium heptamolybdate tetrahydrate (AHMT), and doped with Li+, Na+ and K+ ions was investigated using thermogravimetry, differential thermal analysis, infrared and X-ray diffraction techniques. Results obtained revealed that the decomposition of AHMT proceeded in three decomposition stages in which both NH3 and H2O were released in all stages. The presence of 0.5 mol % alkali metal ions enhances the formation of the intermediateb (NH4)2MO7O22·2H2O while the decomposition of this intermediate into MoO3 is slightly affected in the presence of all dopant concentrations used. The infrared absorption spectra of the thermal products of AHMT treated with 10 mol% alkali metal ions (AMI) at 350°C indicated a reduction of some Mo6+ ions. By heating of AHMT above 500°C in presence of 5 or 10 mol % of AMI, a solid-solid interaction between alkali metal oxides and MoO3 giving rise to well crystallized alkali metal molybdates. finally the activation energies accompanied various decomposition stages were calculated.  相似文献   

9.
In the present work, a theoretical study of the cryptand 4, 7, 13, 16, 21, 24-hexaoxa-1, 10- diazabicyclo [8,8,8] hexacosan (the named [222]) and the cryptand 5, 6-benzo-4, 7, 13, 16, 21, 24-hexaoxa-1, 10-diazabicyclo [8, 8, 8] hexacosan (the nemed [222B]) had been done using density functional theory (DFT) with B3LYP/6-31G* method in order to obtain the electronic and geometrical structure of the cryptands and their complexes with alkali metal ions: Li(+), Na(+), and K(+). The nucleophilicity of cryptands had been investigated by the Fukui function. For complexes, the match between cation and cavity size, the status of interaction between alkali metal ions and donor atoms in the cryptands and the rigidity of the cryptands had been analyzed through the other calculated parameters. In addition, the enthalpies of complexation reaction and cation exchange reaction had been studied by the calculated thermodynamic data. The calculated results are in a good agreement with the experimental data for the complexes.  相似文献   

10.
Non‐covalent interactions between ions and aromatic rings play an important role in the stabilization of macromolecular complexes; of particular interest are peptides and proteins containing aromatic side chains (Phe, Trp, and Tyr) interacting with negatively (Asp and Glu) and positively (Arg and Lys) charged amino acid residues. The structures of the ion–aromatic‐ring complexes are the result of an interaction between the large quadrupole moment of the ring and the charge of the ion. Four attractive interaction types are proposed to be distinguished based on the position of the ion with respect to the plane of the ring: perpendicular cation–π (CP), co‐planar cation–π (CP), perpendicular anion–π (AP), and co‐planar anion–π (AP). To understand more than the basic features of these four interaction types, a systematic, high‐level quantum chemical study is performed, using the X + C6H6, M+ + C6H6, X + C6F6, and M+ + C6F6 model systems with X = H, F, Cl, HCOO, CH3COO and M+ = H+, Li+, Na+, , CH3 , whereby C6H6 and C6F6 represent an electron‐rich and an electron‐deficient π system, respectively. Benchmark‐quality interaction energies with small uncertainties, obtained via the so‐called focal‐point analysis (FPA) technique, are reported for the four interaction types. The computations reveal that the interactions lead to significant stabilization, and that the interaction energy order, given in kcal mol−1 in parentheses, is CP (23–37) > AP (14–21) > CP (9–22) > AP (6–16). A natural bond orbital analysis performed leads to a deeper qualitative understanding of the four interaction types. To facilitate the future quantum chemical characterization of ion–aromatic‐ring interactions in large biomolecules, the performance of three density functional theory methods, B3LYP, BHandHLYP, and M06‐2X, is tested against the FPA benchmarks, with the result that the M06‐2X functional performs best. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
硝酸乙酯分子间相互作用的ab initio研究   总被引:3,自引:2,他引:3  
在abinitio-HF/6-31G水平上求得硝酸乙酯二聚体势能面上的四种优化构型和电子结构。经MP2电子相关校正和基组叠加误差(BSSE)以及零点能(ZPE)校正,求得二聚体的最大结合能为11.46kJ.mol^-^1,还进行HF/6-311G和HF/6-311++G水平的总能量比较计算,发现6-31G基组对计算结合能比较适合,二子体系间的电荷转移很少,对优化构型进行振动分析,并基于统计热力学求得从单体形成二聚体的热力学性质变化。  相似文献   

12.
本文研究了双偶氮基开链有色冠醚1和2与过渡金属离子反应后的紫外可见光谱。实验结果表明:化合物1对Ag ̄+Rd ̄2+、Pt ̄4+、Ni ̄2+和Cr ̄2+,化合物2对Pd ̄2+和Pt ̄4+有明显的选择配位作用,其中2对Li ̄+生成配合物时△λ_(max)很大(105nm),溶液有根明显的变色现象,故2可能用作Li ̄+的分光光度显色剂。  相似文献   

13.
In this work, a quantum mechanical research of five lariat crown ethers(LCEs), 2‐methoxy‐15‐crown‐5( A ), N‐methoxy‐4‐aza‐15‐crown‐5( B ), N‐methoxy‐4‐aza‐18‐crown‐6( C ), N‐methoxyethyl‐4‐aza‐18‐crown‐6( D ), N,N′‐bis(2‐metho xyethyl)‐4,13‐diaza‐18‐crown‐6( E ), which are based on either 15‐crown‐5 or 18‐crown‐6 frameworks and contain various pendant arms extending from either carbon or nitrogen atoms on the crown frameworks, had been done using density functional theory with B3LYP/6‐31G* method to obtain the electronic and geometrical structures of the LCEs and their complexes with alkali metal ions: Na+ and K+. The nucleophilicity of LCEs had been investigated by the Fukui functions. For complexes, the match between the cation and cavity size, the status of interaction between alkali metal ions and donor atoms in the LCEs, and the sidearm effect of the LCEs had been analyzed through the other calculated parameters, such as, highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, and energy gaps. In addition, the enthalpies of complexation reaction had been studied by the calculated thermodynamic data (298 K). The calculated results are all in a good agreement with the experimental data for the complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

14.
碱金属离子改性对纳米HZSM-5沸石丁烯裂解催化性能的影响   总被引:1,自引:0,他引:1  
利用NH3-TPD表征和小型固定床反应评价研究了不同碱金属离子浸渍改性对纳米HZSM-5沸石的酸度及混合碳四液化气中丁烯催化裂解性能的影响。结果表明,尽管锂、钠、钾改性在达到最佳乙烯和丙烯选择性时对应的负载量不同,但其最佳乙烯和丙烯选择性为50%~60%。碱金属离子改性催化剂在连续运转过程中其催化活性缓慢下降,但乙烯和...  相似文献   

15.
The energies, geometries and harmonic vibrational frequencies of 1:1 5‐hydroxytryptamine‐water (5‐HT‐H2O) complexes are studied at the MP2/6‐311++G(d,p) level. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) analyses and the localized molecular orbital energy decomposition analysis (LMO‐EDA) were performed to explore the nature of the hydrogen‐bonding interactions in these complexes. Various types of hydrogen bonds (H‐bonds) are formed in these 5‐HT‐H2O complexes. The intermolecular C4H55‐HT···Ow H‐bond in HTW3 is strengthened due to the cooperativity, whereas no such cooperativity is found in the other 5‐HT‐H2O complexes. H‐bond in which nitrogen atom of amino in 5‐HT acted as proton donors was stronger than other H‐bonds. Our researches show that the hydrogen bonding interaction plays a vital role on the relative stabilities of 5‐HT‐H2O complexes.  相似文献   

16.
碱土金属对MnOx-CeO2/ZrO2-PILC催化剂SCR活性影响研究   总被引:2,自引:0,他引:2  
采用浸渍法模拟低温选择性催化还原(SCR)催化剂MnOx-CeO2/ZrO2-PILC的碱土金属中毒特性,研究了碱土金属及其负载量对中毒程度的影响。实验表明,钙/镁的添加会引起催化剂中毒,催化剂中毒失活程度与碱土金属的负载量有关。运用 X射线衍射(XRD)、H2程序升温还原( H2-TPR)、氮气吸脱附及 NH3程序升温脱附(NH3-TPD)对新鲜催化剂以及碱土金属中毒后的催化剂进行了表征。结果表明,钙/镁中毒后催化剂的比表面积降低、催化剂氧化还原性和表面酸性减少,进而造成催化剂失活。  相似文献   

17.
Telomerase inhibitor causes the attrition of telomere length and consequently leading to senescence which require a lag period for cancer cells to stop proliferating. Telomeric sequences form quadruplex structures stabilized by tetrads. The structural and electronic properties related with interaction of 2,6‐diaminoanthraquinone and tetrads are the key step to elucidate the anticancer activity. The present study has been focused on the stability of the isolated tetrads and the effect of interaction of 2,6‐diaminoanthraquinone with G‐tetrad, non‐G‐tetrads, and mixed tetrads using density functional theory method in both gas and aqueous phases. The solvent interaction with the molecular systems has increased the stability of the isolated tetrads and complexes. The sharing of electron density between the interacting molecules is shown through electron density difference maps. The atoms in molecules theory and natural bond orbital analysis have been performed to study the nature of hydrogen bonds in the inhibitor interacting complexes. The linear correlation is shown between electron density [ρ(r)], and its Laplacian [(2ρ(r)] at the bond critical points. The strong binding nature of 2,6‐diaminoanthraquinone with studied tetrads reveals that this inhibitor is suitable to stabilize the above tetrads and inhibit the telomerase activity. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
The formation of polyhedral copper/sodium(potassium) organosiloxanes was examined as a result of hydrolytic condensation of organotrialkoxysilanes in the presence of copper(ii) and sodium or potassium ions. High selectivity of the synthesis of copper/sodium(potassium) organosiloxanes having desired structures can be achieved by choosing the reaction conditions.  相似文献   

19.
The multi-component molecular orbital method, which can take account of the quantum effect of the electrons and nuclei, is applied to the calculation of lithium hydride isotope species with the configuration interaction (CI) scheme. The optimum basis set functions for quantum nuclei are proposed by the fully variational procedure under single electronic–single nuclear excitation CI level. The average internuclear distances and dipole moments for isotopic lithium hydride molecules calculated with small basis functions are reasonable agreement with the corresponding experimental values.  相似文献   

20.
Bimolecular homolytic substitution (SH2) reactions of the methyl radical with a series of three‐membered ring compounds have been given a systematic theoretical study. These reactions proceed predominantly via the backside displacement. The formation of the new radical product is thermodynamically favorable probably due to the release of the ring strain. Natural bond orbital analysis reveals that SOMO → σ*(C‐X) (X= C, N, O) interaction plays a major role in these SH2 reactions, which shows the methyl radical mainly acts as a nucleophilic radical. In addition, according to the activation strain model analysis, an expected single correlation has not been obtained between the reactant distortion enthalpies and the overall activation enthalpies. However, these reactions can be divided into three groups and each group exhibits a good linear correlation. Marcus theory can thoroughly account for this phenomenon. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号