首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the nature of organic ligands and complex formation on the photoluminescent characteristics (relative quantum yield, excited-state lifetime) and thermal stability of tetradentate Schiff bases (H2L), derivatives of salicylaldehyde (H2(SAL)1, H2(SAL)2), o-vanillin (H2(MO)1, H2(MO)2) with ethylenediamine and o-phenylenediamine, and their zinc(II) complexes was studied. Zinc(II) complexes were synthesized by the reaction of H2L with Zn(AcO)2·2H2O in MeOH at room temperature or under reflux. In the case of H2L = H2(SAL)2, H2(MO)1, H2(MO)2, complexes of the composition ZnL·H2O were isolated irrespective of the temperature. For H2L = H2(SAL)1, the reaction results in Zn(SAL)1·H2O at room temperature and in anhydrous dimeric complex [Zn(SAL)1]2 under reflux. Density functional calculations of H2L and ZnL confirmed that (1) luminescence of these compounds is due to the π-π* transition between orbitals of the organic ligand and (2) enhancement of conjugation of the chain and introduction of electron-donating substituents lead to a decrease of the energy gap and, there-fore, to a bathochromic shift of the emission maximum. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1846–1855, September, 2008.  相似文献   

2.
Mononuclear transition metal(II) complexes of the type M(L)2?2H2O (where M = Co, Ni, Cu, Zn) have been synthesized from uninegative Schiff base ligands (HL1–HL4) designed by condensation of 4‐fluorobenzylamine with 2‐hydroxy‐1‐naphthaldehyde/3,5‐dichlorosalicylaldehyde/3,5‐dibromosalicylaldehyde/3‐bromo‐5‐chlorosalicylaldehyde. The compounds were successfully characterized using spectroscopic and physiochemical methods together with elemental analysis. Spectroscopic elucidation indicates a monobasic bidentate nature of ligands coordinated via deprotonated phenolic oxygen and azomethine nitrogen atom which suggests an octahedral geometry around the central metal ions. The complexes and ligands were screened for their in vitro antimicrobial activity against bacterial and fungal strains, the zinc(II) complexes being more active against the tested microbial strains. Further, the metal complexes were found to be more active than the uncomplexed ligands due to chelation process and, moreover, the complexes were more active against fungal strains than bacterial strains. Cytotoxic activities of all compounds were evaluated towards human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and one normal human lung cell line (MRC‐5) using MTT colorimetric assay with doxorubicin as a standard. The zinc complexes were most active against the cancer cell lines and also found to be less toxic against MRC‐5 normal cell line than standard doxorubicin.  相似文献   

3.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Nowadays in cancer treatment, both metal complexes and organic molecules are being widely used. Current years have seen a surge of interest in the application of organometallic compounds to treat cancer and other diseases. Undeniably, the unique properties of organometallic compounds, intermediate between those of classical inorganic and organic materials, provide new opportunities in the field of medicinal chemistry. Since the discovery of cisplatin, many transition metal complexes have been synthesized and assayed for anticancer activity. In recent years, ruthenium-based Schiff base complexes have emerged as promising antitumor and antimetastatic agents with potential uses in treatment of platinum-resistant tumors or as alternatives to platinum-based chemotherapy. Advantages of utilizing ruthenium complexes in drug development include reliable methods of synthesizing stable complexes; the ability to tune ligand affinities, electron transfer and substitution rates, and reduction potentials; and an increasing knowledge of the biological effects of such complexes. This great expansion of ruthenium-based Schiff base complexes is mainly due to the unique ability of the ruthenium core to permit multiple oxidation states, hence versatile electron-transfer pathways, and because of the ease of preparation with versatile and variable-denticity Schiff base ligands. This review aims to bring the reader up to date with the more recent Ru(II)/(III)-based Schiff base complexes that have been synthesized and investigated for their cytotoxicity.  相似文献   

5.
A series of twenty compounds inclusive of bidentate Schiff bases derived from condensation of 4‐methyl‐3‐thiosemicarbazide with substituted derivatives of napthaldehyde/benzaldehyde/salicylaldehyde and their mononuclear Co (II), Ni (II), Cu (II) and Zn (II) complexes in molar ratio (1:1) were synthesized and characterized. The coordination behavior, modes of bonding and overall geometry of the compounds was known from the elemental analysis, spectral techniques (IR, UV–Vis, 1H NMR, 13C NMR, ESR and ESI‐mass), magnetic moment measurements, molar conductance, thermal and powder XRD studies. The studies revealed octahedral geometry for all the complexes where ligands coordinated in a neutral bidentate manner (NS) via nitrogen atom of azomethine group and sulphur atom of thione group with the metal centre. In vitro biological effects of the compounds were tested against four bacterial species and two fungal strains. The results indicated that the metal complexes showed a marked enhancement in biocidal activity in comparable with the parent Schiff bases. In vitro anticancer activity against the malignant tumor cell lines; human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and human normal lung cell line (MRC‐5) using MTT assay, exposed compound 16 as a leading member with lowest IC50 value of 10.6 ± 0.14 μM against (A549) cell line.  相似文献   

6.
By condensation of rimantadine and substituted salicylaldehyde, three new Schiff bases, HL1, HL2 and HL3, were synthesized. Then, a mixture of one of the new ligands and cobalt(II) chloride hexahydrate in ethanol led to 1, 2, and 3, respectively. These complexes were characterized by melting point, elemental analysis, infrared spectra, molar conductance, thermal analysis, and single-crystal X-ray diffraction analysis. X-ray diffraction analysis reveals that 1 crystallizes in the orthorhombic system, Pbcn space group; each asymmetric unit consists of one cobalt(II) ion, two deprotonated ligands, and one lattice water. The central cobalt is four coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligand, forming a distorted tetrahedral geometry. Complexes 2 and 3 crystallize in the monoclinic system, P21/c space group; each asymmetric unit consists of one cobalt(II), two corresponding deprotonated ligands, one lattice water, and one methanol. The central cobalt is also four-coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligand, forming a distorted tetrahedral geometry.  相似文献   

7.
The synthesis and X-ray structural characterisation of a new Cu(II) complex, [Cu(L1)Cl](ClO4)·CH3OH (1) [L1 = N,N′-bis((pyridine-2-yl)phenylidene)-1,3-diaminopropan-2-ol], has been described in this work. The structural study reveals that the Cu(II) centre in 1 has a square pyramidal geometry with a trigonality index τ = 0.43, being coordinated by the organic ligand and a chloro group. The interaction of complex 1 and another complex previously reported by our group, [Cu(L2)](ClO4)2 (2) [L2 = N-(1-pyridin-2-yl-phenylidene)-N′-[2-({2-[(1-pyridin-2-ylphenylidene)amino]ethyl}amino)ethyl]ethane-1,2diamine], with calf thymus DNA (CT-DNA) has been investigated using absorption and emission spectral studies. The binding constant (Kb) and the linear Stern-Volmer quenching constant (Ksv) have been determined.  相似文献   

8.
Three ferrocenyl Schiff bases containing a phenol moiety have been formed by 1:1 molar condensation of acetylferrocene with 2‐aminophenol, 2‐amino‐5‐picoline or 2‐amino‐5‐chlorophenol. These ligands form 2:1 complexs with cobalt(II), copper(II), nickel(II), and zinc(II) ions. From the different spectral data, it was found that coordination of the ligands with the metal ions takes place via the azomethine nitrogen atoms and the deprotonated oxygen of the phenol groups. These ligands and their complexes have been characterized by IR, 1H NMR, 13C NMR, UV–Vis spectra, and elemental analysis. The spectral data of the ligands and their complexes are discussed in connection with the structural changes due to complexation. The complexes prepared showed good antimicrobial activity against Escherichia coli, Bacillus subtilus, and Candida albicans. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Two bidentate Schiff bases, 5-methyl-2-p-tolyl-4-(1-p-tolylimino-propyl)-2H-pyrazol-3-ol (L1) and 2-(3-chloro-phenyl)-5-methyl-4-(1-p-tolylimino-propyl)-2H-pyrazol-3-ol (L2), were synthesized by condensation of 4-acyl pyrazolones with p-toluidine in ethanol. These ligands have been characterized by elemental analysis, infrared (IR), 1H NMR, and mass spectra. A single crystal molecular structure of ligand L2 was also solved. Nickel(II) complexes of these ligands with general formula [ML2?·?2H2O] have been prepared by the interaction of aqueous solution of Ni-acetate with ethanolic solution of the appropriate ligand. The complexes were separated, analyzed, and their structures were elucidated on the basis of elemental analysis, Ni(II) determination, IR, UV-Vis, conductance, mass, and TGA-DTA data. Octahedral structure was proposed for the synthesized complexes.  相似文献   

10.
Template reactions of salicylaldehyde or pentanedione with 3-aminopropanethiol (Hapt) in the presence of Ni(II) ions are described. When salicylaldehyde was used, a dinuclear Ni(II) complex [Ni(bit′)]2 (2) (H2bit′?=?2-(3′-mercaptopropyliminomethyl)phenol) was obtained instead of the reported trinuclear one [Ni(bit)]3 (1) (H2bit?=?2-(2′-mercaptoethyliminomethyl)phenol) containing 2-aminoethanethiol (Haet). Starting from pentanedione, the expected dinuclear complex [Ni(pit′)]2 (H2pit′?=?2-(3′-mercaptopropylimino)pentanol) was not obtained, nor was [Ni(pit)]2 (3) (H2pit?=?2-(2′-mercaptoethylimino)pentanol). The complex was found to be a trinuclear Ni(II) complex [Ni{Ni(apt)2}2]2+ (4), as confirmed by elemental analysis, electronic and NMR spectra. Complexes 1 and 3 were also synthesized and their 13C, 1H–1H and 13C–1H?NMR spectra are discussed in detail. The X-ray crystal structure of 2 shows that two Ni(II) ions are connected by the thiolate donor atom from each ligand, resulting in a four-membered ring. Differences in reactivity and properties is due to the presence of an additional methylene group in the aminoalkane arm of the ligand.  相似文献   

11.
12.
Reaction of Cu(II) nitrate with a new pyrazole-based Schiff base ligand, 5-methyl-3-formylpyrazole-N-(2′-methylphenoxy)methyleneimine (MPzOA), afforded two types of Cu(II) complexes at different reaction temperatures, [Cu(MPzOA)(NO3)]2 (1) and [Cu(3,7,11,15-tetramethylporphyrin)(H2O)](NO3)2 (2), reported together with a Ni(II) complex, [Ni(MPzOA)2(H2O)2]Br2 (3). The compounds are characterized by single crystal X-ray structure analyses along with several physico-chemical and spectral parameters. Complex 1 is authenticated as a bis(μ-pyrazolato)dicopper(II), while 2 is a porphyrinogen and 3 is a distorted octahedral complex. Structural analyses of the complexes reveal that 1 crystallized in monoclinic P21/n space group while 2 and 3 crystallized in monoclinic C2/c space group. DNA-binding studies of the complexes have shown that the complexes interact with CT-DNA. DNA-cleavage studies with plasmid DNA have shown that 1 and 2 induce extensive DNA cleavage in the presence of H2O2 as an additive, whereas there is no change in degradation of super-coiled DNA by 3 in the presence of additive. The antimicrobial studies of the complexes against Escherichia coli DH5α bacteria strain indicated that all the complexes were capable of killing E. coli with different LD50 values.  相似文献   

13.
Two new unsymmetrical copper(II) Schiff base complexes, [CuLn(py)]ClO4 (n = 1, 2) in which Ln represents a tridentate N2O type Schiff base ligand, were synthesized. Lns were derived from monocondensation of meso-1,2-diphenyl-1,2-ethylenediamine with salicylaldehyde or 3-methoxysalicylaldehyde. The reaction between [CuLn(py)]ClO4 and other salicylaldehyde derivatives resulted in new N2O2 unsymmetrical tetradentate CuII complexes, CuL3–6. Crystal structures of [CuL1(py)]ClO4, CuL4, and CuL5 were obtained. These new complexes as well as a series of related symmetrical ones (i.e. CuL7–12) were tested for their in vitro anticancer activity against human liver cancer cell line (Hep-G2) by MTT and apoptosis assay. All of the complexes showed considerable cytotoxic activity against tumor cell lines (IC50 = 5.13–16.24 μg mL?1). The symmetrical CuL7 was the most potent anticancer derivative (IC50 = 5.13 μg mL?1) compared to the control drug 5-FU (IC50 = 5.4 μg mL-1, p < 0.05). Flow cytometry experiments showed that the copper derivatives especially [CuL2(py)]ClO4 and CuL7 induced more apoptosis on Hep-G2 tumor cell lines compared to 5-FU.  相似文献   

14.
A series of new diphenyltin(IV) complexes of the type Ph2SnL (L1: N‐phenacyl‐5‐bromosalicylideneimine, Ph2SnL1; L2: N‐phenacyl‐3,5‐dichlorosalicylideneimine, Ph2SnL2; L3: N–phenacyl‐4‐methoxysalicylideneimine, Ph2SnL3) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and mass spectrometry techniques. The C―Sn―C angles in the complexes were calculated using equations with the 1J(117/119Sn―13C) values from 13C NMR spectra. The possible structures, NMR and electronic properties of the studied molecules were calculated through density functional theory and results compared with experimental data. All the complexes were found to be mildly active against several microorganisms and some fungi. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Three asymmetric Schiff-base tetradentate diimines H2L1, H2L2, and H2L3 [(2-OH)C6H4N=CHC6H42-N=CHC6H3(2-OH)(5-X), X?=?H, CH3, Cl respectively] have been synthesized by a two step process. The reaction of 2-hydroxy aniline with 2-nitro-benzaldehyde in EtOH gave the starting Schiff base, 2-hydroxy-N-(2-nitrobenzylidene)aniline (SB-NO2), which was reduced into the amino derivative (SB-NH2) in solution. Reacting SB-NH2 with 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde and 2-hydroxy-5-chlorobenzaldehyde gave the three new ligands H2L1, H2L2, and H2L3 respectively. Their dimeric, binuclear metal complexes with Ni(II) and Fe(III) have also been synthesized. The ligands and their complexes were characterized by elemental analyses, LC–MS, IR, electronic, 1H and 13C-NMR spectra, TGA, conductivity and magnetic measurements. All of the spectroscopic, analytical and other data indicate octahedral geometry M2L2(H2O)X2 (M: Ni,Co;X: Cl or H2O), except for NiL2 which is monomeric. Antimicrobial activities of the ligands and the complexes were evaluated against five bacteria. While the ligands and the Ni complexes are inactive towards Pseudomonas aeruginosa and Staphylococcus aureus, Fe complexes are active; only Fe complexes are inactive against Escherichia coli. All of the compounds have antimicrobial activities against Bacillus subtilis, and Yersinia enterecolitica.  相似文献   

16.
Four different mononuclear palladium(II) complexes of 3‐acetyl‐8‐methoxycoumarin Schiff bases were synthesized and characterized by spectrochemical techniques. Further analysis through X‐ray crystallography confirmed the structures of the complexes. Their interactive ability with Calf Thymus DNA and protein (Bovine Serum Albumin and Human Serum Albumin) were investigated by means of absorption and emission methods. The intercalative mode of binding with DNA was supported by EB displacement studies and viscosity measurements. Configurational changes that occurred in the proteins have been analysed with the help of 3D fluorescence studies. The complexes were shown to have good antimicrobial activity against the tested bacterial and fungal pathogens. In addition, antiproliferative activity of the complexes was evaluated on A549 and MCF‐7 cell lines and the complexes were comparatively more active than the standard drug cisplatin. Among the compounds, complex 3 was the most effective against MCF‐7 (IC50 value of 5.20 ± 0.15 μM) and A549 (5.09 ± 0.13 μM) compared with the other complexes 1 (6.48 ± 0.17 μM; 5.98 ± 0.09 μM), 2 (5.53 ± 0.12 μM; 5.85 ± 0.11 μM), 4 (6.73 ± 0.19 μM; 6.63 ± 0.16 μM) and cisplatin (16.79 ± 0.08 μM; 15.10 ± 0.05 μM) respectively. LDH and NO release assays confirmed the cytotoxic potential of the synthesized complexes.  相似文献   

17.
Three copper(II) complexes derived from bulky ortho-hydroxy Schiff base ligands, (1)-(3), were synthesized and characterized by chemical analysis, UV-Vis, IR, μeff and mass spectrometry. The solid state structures of compounds (1)-(3) were determined. The solid state X-ray diffraction studies of these compounds show that the geometry is intermediate between square planar and tetrahedral. Moreover, EPR studies in DMF solution at 77 K suggest that the geometry of these complexes in solution is different from that observed in the solid state by X-ray crystallography. Furthermore, cyclic voltammetry studies performed for (1)-(3), indicate a dependence of the cathodic potentials upon conformational and electronic effects.  相似文献   

18.
Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensingo- hydroxyacetophenone with aniline,o- orp-methylaniline have been carried out. The products were characterized by analytical, IR, electronic and1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

19.
A series of neodymium(III) and samarium(III) complexes of type [Ln(L)Cl(H2O)3] have been synthesized with Schiff bases (LH2) derived from 3‐(phenyl/substituted phenyl)‐4‐amino‐5‐mercapto‐1,2,4‐triazoles and isatin. The structures of the complexes were established using elemental analysis, molar conductivities, magnetic moments, infrared, NMR (1H, 13C) and UV–visible spectra, X‐ray diffraction and mass spectrometry. The thermal behaviour of these compounds under non‐isothermal conditions was investigated using thermogravimetry and differential thermogravimetry. The intermediates obtained at the end of various thermal decomposition steps were identified from elemental analysis and infrared spectral studies. All the ligands and their complexes were also screened for their antibacterial activity against Staphylococcus aureus and Bacillus subtilis and antifungal activity against Aspergillus niger, Aspergillus flavus and Colletotrichum capsici. The screening results were correlated with the structural features of the compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号