首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
任蕤  杨频 《中国化学》1999,17(6):625-636
Hydrolysis of DNA is an important enzymatic reaction , but it is exceedingly difficult to mimic in the laboratory because of the stability of hydrolysis of DNA. In this paper, the cleavage activity of complexes formed between Cu(Ⅱ) and four different amino acid or amino acid methyl ester on DNA is studied by gel elec-trophoresis. It is found that DNA could be cleaved by Cu(Ⅱ)-L-His and Cu(Ⅱ)-L-His methyl ester complexes and the efficiency of cleavage is largely dependent on the metal ion-to-ligand ratio. Further experiments show that the cleavage of DNA mediated by Cu(Ⅱ)-L-His complexes occurs via a hydrolytic mechanism and the active chemical species that affects DNA cleavage is proposed to be MI2H and ML2H22 .  相似文献   

2.
The enantiodiscriminating polymerization of racemic cyclodextrin‐complexed N‐methacryloyl‐phenylalanine methyl ester is investigated. 1H NMR spectra of the complexes with methylated β‐cyclodextrin in D2O manifest splittings due to chiral recognition. The different stabilities of the diastereomeric complexes influence the kinetics of the homopolymerization, particularly at 0 °C. An enrichment of the residual N‐methacryloyl‐L ‐phenylalanine methyl ester of 14 % was achieved after 21 h of polymerization.  相似文献   

3.
The ribbed functionalization of the clathrochelate iron(II) tris-dioximates as a potential “molecular scaffold” for the synthesis of polyfunctional and polytopic complexes with closo-dodecaborate-anion substituents was performed. closo-Dodecaborate-substituted clathrochelate [FeBd2(Cl(B12H11NH)Gm)(BF)2]2? (where Bd2? is α-benzyldioxime dianion, Gm is glyoxime residue) dianion was prepared starting from dichloride clathrochelate FeBd2(Cl2Gm)(BF)2 precursor with amino-closo-dodecaborate (NBu4)[B12H11NH3] in the presence of potassium tert-amylate. This clathrochelate dianion was isolated as a tetra-n-butylammonium salt and characterized using elemental analysis, MALDI-TOF and PD mass, IR, UV-Vis, 57Fe Mössbauer spectra as well as by 1H, 11B and 13C{1H} NMR spectra.  相似文献   

4.
The complexes of silicon (IV) with Schiff base ligands (L1H and L2H of isatin derivatives) having a sulfur and oxygen donor system were prepared by the reactions in methanol environment. These were isolated and characterized by elemental analysis, molecular weight determinations and conductance measurements. On the basis of electronic, infrared, 1H, 13C and 29Si NMR spectral studies, trigonal bipyramidal geometry was suggested for the resulting complexes. These data support preferential binding of sulfur and oxygen atom to the silicon atom. The disease resistance activities of the ligands and their corresponding complexes were examined successfully in in vitro and in vivo experiments, against pathogenic fungi and bacteria. Results were quite encouraging and these were compared with the standard pesticides Bavistin and Streptomycin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.

Multistep synthetic pathway towards a series of the anisoleboron-capped ribbed-functionalized iron(II) cage complexes was developed. Their hexachloroclathrochelate precursor was obtained by the template condensation of three dichloroglyoximate chelating ligand synthons with two molecules of 4-methoxyphenylboronic acid as a Lewis-acidic cross-linking agent on the iron(II) ion as a matrix. It easily underwent a stepwise nucleophilic substitution with S2- and O2-dinucleophilic aliphatic (ethanedithiolate) or aromatic (pyrocatecholate) agents, forming the stable X2 (X?=?S or O)-six-membered ribbed substituent(s) at a quasiaromatic cage framework. Performing these reactions under the different reaction conditions (i.e., at various hexachloroclathrochelate-to-nucleophile molar ratios, a wide range of temperatures and a series of the solvents) allowed to control a predominant formation of its mono-, di- or triribbed-substituted macrobicyclic derivatives. Thus obtained iron(II) di- and tetrachloroclathrochelates can undergo their post-synthetic transformations with active nucleophilic agents. The latter complexes underwent a further nucleophilic substitution with the anionic derivative of n-butanthiol, thus giving the hexasulfide macrobicyclic compound with two functionalizing n-alkyl substituents in one of its three chelate α-dioximate fragments and two apical biorelevant anisole substituents. The obtained iron(II) clathrochelates, possessing a low-spin electronic d6 configuration, were characterized using elemental analysis, MALDI-TOF mass spectrometry, UV–Vis, 1H and 13C{1H} NMR spectroscopies, and by the single-crystal X-ray diffraction experiments for the hexachloroclathrochelate precursor, its dichlorotetrasulfide macrobicyclic derivative and the monoribbed-functionalized hexasulfide cage complex. In all their molecules, the encapsulated iron(II) ion is situated in the centre of its FeN6-coordination polyhedron, the geometry of which is intermediate between a trigonal prism and a trigonal antiprism with the distortion angles φ from 21.4 to 23.4°. Halogen bonding between the polyhalogenoclathrochelate molecules in their crystals is observed.

Graphical abstract
  相似文献   

6.
The crystal and molecular structures of four representatives of the homologous series of iron(ii) clathrochelates FeBd2Gm(BF)2·1.5CHCl3, FeBd2Mm(BF)2·CH2Cl2, FeBd2Dm(BF)2·CH2Cl2, and FeBd2Dm(BF)2·0.5C6H6·0.5iso-C8H18 whose frameworks contain two α-benzyldioximate (Bd) chelate rings and one acyclic α-dioximate fragment (Gm2?, Mm2?, and Dm2? are glyoxime, methylglyoxime, and dimethylglyoxime dianions, respectively) were studied by X-ray diffraction. Two types, A and B, of independent macrobicycles were observed in the unit cell of the crystal FeBd2Gm(BF)2·1.5CHCl3. The geometry of the FeN6 coordination polyhedra of encapsulated iron(ii) ions is intermediate between a trigonal prism (TP) and a trigonal antiprism (TAP). The encapsulated iron(ii) ions occupy centers of the TP-TAP polyhedra. For the macrobicyclic derivatives of dimethylglyoxime, the distortion angles φ(average values 24.0 and 24.7°) are larger than for the glyoximate and methylglyoximate analogs (average values 20.7, 22.6, and 23.2°). The larger trigonal-prismatic distortion of the coordination polyhedron in type-B FeBd2Gm(BF)2 molecules as compared to type-A FeBd2Gm(BF)2 can be explained by a difference in their intermolecular interactions. The carbon-carbon distances in the glyoximate and methylglyoximate ribbed fragments of the clathrochelates FeBd2Gm(BF)2 and FeBd2Mm(BF)2 (average values 1.414 shorter than in the α-benzyldioximate chelate rings (about 1.45 FeBd2Gm(BF)2·1.5CHCl3 and FeBd2Dm(BF)2·CH2Cl2 have laminated structures in which chains of the clathrochelate molecules are differently oriented relative to the axes of the unit cells. The crystals FeBd2Mm(BF)2·CH2Cl2 and FeBd2Dm(BF)2·0.5C6H6·0.5 iso-C8H18 have framework structures and their solvate molecules occupy voids between the dimeric associates and the macrobicyclic molecules, respectively.  相似文献   

7.
Hong Wang  Lin Wu 《中国化学》2011,29(10):2063-2067
The structures and stabilities of cage Si20F20 and its endohedral complexes X2−@Si20F20 (X=O, S, Se) were determined at the B3LYP/6‐31G(d) levels of density functional theory (DFT). It is found that the adiabatic electron affinity (EAad) of host cage Si20F20 (Ih) is higher than that of isolated O atom (4.24 vs. 1.46 eV). This suggests the Si20F20 cage can selectively trap and stabilize the capsulated spherical anions. The calculations predict that X=S and Se are nearly located at the center of the cage, and O dramatically deviates from the center in C3v symmetry. Moreover, the corresponding X2−@Si20F20 complexes have more negative inclusion energies (ΔEinc) and thermodynamic parameters (ΔZ) than X2−@C20F20. The amount of charge that is being transferred from the encapsulated anions to the cage increases with the atomic radius, i.e., from O2− (ca. 45%), S2− (ca. 51%) to Se2− (ca. 59%), and such a novel model of cage may have practical uses as potential and electrical building units of nanoscale materials.  相似文献   

8.
The reaction of the reactive clathrochelate FeBd2(Cl2Gm)(BF)2 (Bd and Cl2Gm are the α -benzyl dioxime and dichloroglyoxime dianions, respectively) with amino-substituted nitroxide TEMPO-NH2 afforded new mono- and biradical iron(II) mono- and dinitroxide clathrochelate complexes. The complexes were characterized by X-ray diffraction and spectroscopic (UV-Vis, ESR, and 57Fe Mossbauer) methods. Dedicated to Academician N. K. Kochetkov on the occasion of his 90th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1097–1102, May, 2005.  相似文献   

9.
A synthetic strategy for obtaining structurally flexible hybrid iron(II) carboranoclatrochelates functionalized with biorelevant groups, based on a combination of a 1,3-dipolar cycloaddition reaction with nucleophilic substitution of an appropriate chloroclathrochelate precursor, was developed. In its first stage, a stepwise substitution of the dichloroclathrochelate precursor with amine N-nucleophiles of different natures in various solvents was performed. One of its two chlorine atoms with morpholine or diethylamine in dichloromethane gave reactive monohalogenoclathrochelate complexes functionalized with abiorelevant substituents. Further nucleophilic substitution of their remaining chlorine atoms with propargylamine in DMF led to morpholine- and diethylamine-functionalized monopropargylamine cage complexes, the molecules of which contain the single terminal C≡C bond. Their “click” 1,3-cycloaddition reactions in toluene with ortho-carborane-(1)-methylazide catalyzed by copper(II) acetate gave spacer-containing di- and tritopic iron(II) carboranoclatrochelates formed by a covalent linking between their different polyhedral(cage) fragments. The obtained complexes were characterized using elemental analysis, MALDI-TOF mass, UV-Vis, 1H, 1H{11B}, 11B, 11B{1H}, 19F{1H} and 13C{1H}-NMR spectra, and by a single crystal synchrotron X-ray diffraction experiment for the diethylamine-functionalized iron(II) carboranoclathrochelate. Its encapsulated iron(II) ion is situated almost in the center of the FeN6-coordination polyhedron possessing a geometry intermediate between a trigonal prism and a trigonal antiprism with a distortion angle φ of approximately 28°. Conformation of this hybrid molecule is strongly affected by its intramolecular dihydrogen bonding: a flexibility of the carborane-terminated ribbed substituent allowed the formation of numerous C–H…H–B intramolecular interactions. The H(C) atom of this carborane core also forms the intermolecular C–H…F–B interaction with an adjacent carboranoclathrochelate molecule. The N–H…N intermolecular interaction between the diethylamine group of one hybrid molecule and the heterocyclic five-membered 1H-[1,2,3]-triazolyl fragment of the second molecule of this type caused formation of H-bonded carboranoclathrochelate dimers in the X-rayed crystal.  相似文献   

10.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 .  相似文献   

11.
Two novel supramolecular complexes of types [Ru(L)(H2L)Cl·OH2] and [Ru(HLn)Cl3] (where H2L is a potential tetradentate ligand derived from hydrazine hydrate and diethyl malonate, and HLn is a potential bidentate ligand derived from coupling of allyl azo‐β‐diketone) have been synthesized and characterized by elemental analysis, conductance and magnetic measurements, followed by 1H NMR, to determine the effect of substituents on the intramolecular hydrogen bond. The electronic properties and models of the bonding of ligands and complexes were investigated by UV–Vis and IR spectroscopies. The first type of complex contains terminal hydrazinic nitrogen atoms with an unshared electron pair and may take part in nucleophilic condensations. Therefore, the reactions of allyl‐β‐diketone complexes with malonic dihydrazide have also been studied, as these cause ring closure and formation of supramolecular macrocyclic ligand complexes. The wavelengths of the principal electronic absorption peaks have been accounted for quantitatively in terms of crystal field theory, and various parameters have been evaluated. On the basis of the electronic spectra, an octahedral geometry has been established for the polymer complexes C. The macrocyclic polymer complexes D are pentacoordinate, and a trigonal‐bipyramidal environment (D3h) is suggested for the ruthenium(III) ion. The effect of the Hammett constant on the ligand field parameters is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

14.
Dimethyl(salicylaldiminato[N:O])cobalt complexes [CoMe2(2‐O‐C6H1R1R2 R3‐CH=NR4)L2] (L=PMe3) ( 1 ‐ 6 ) have been prepared through the reaction of [CoMe3(PMe3)3] with the corresponding substituted salicylaldimine. The complexes were characterized with IR, 1H NMR, 13C NMR, 31P NMR and elemental analyses. The X‐ray crystal structure of complex 1 shows an octahedral coordination of cobalt, with two equatorial cis‐methyl groups opposite to the planar N:O‐chelate ring.  相似文献   

15.
The synthesis, spectroscopy, and antitumor behavior of organotin(IV) complexes of 2,3-methylenedioxyphenylpropenoic acid are described. The spectroscopic data indicate 1 : 2 and 1 : 1 metal to ligand stoichiometry in case of di- and trioganotin(IV) compounds and hypervalency of Sn(IV) in trigonal bipyramidal and octahedral modes. Mass spectrometric and elemental analysis data support the solid and solution spectroscopic results. The complexes have been evaluated in vitro against crown gall tumor and bio-activity screenings showed in vitro biological potential. The nature of covalent attachments (methyl, ethyl, n-butyl, phenyl, and n-octyl) of Sn(IV) played a decisive role for bioactivity. All the compounds have been studied in solution by NMR (1H, 13C) and also in solid state using FTIR, mass spectrometry, and by X-ray crystallography. The molecular structure of Et2Sn(IV) and Me3Sn(IV) derivatives confirm the behavior of di- and tri-organotin(IV) compounds in solid state. Mono-organotin derivatives are octahedral both in solid and solution.  相似文献   

16.
Tin(IV) complexes of the series of dianionic terdentate Schiff bases N‐[(2‐pyrroyl)methylidene]‐N′‐tosylbenzene‐1,2‐diamine, (H2L1), N‐[(2‐hydroxyphenyl)methylidene]‐N′‐tosylbenzene‐1,2‐diamine (H2L2) and some R substituted 2‐{[(2‐hydroxyphenyl)imino]methyl}phenols [R = H (H2L3), 4,6‐(OCH3)2 (H2L4), 3‐(OC2H5) (H2L5) and 3,5‐Br2 (H2L6)] have been synthesized. The compounds were obtained by the electrochemical oxidation of a tin anode in a cell containing an acetonitrile solution of the corresponding ligand. The complex [SnL12] was also obtained by reaction of SnCl2·2H2O and H2L1 in methanol in the presence of triethylamine. The crystal structure of the ligand [H2L6] and the complexes [SnL12] (1) , [SnL22] (2) , [SnL32] (3) and [SnL62] (6) were determined by X‐ray diffraction. In the complexes, the tin atom is in an octahedral environment coordinated by two dianionic terdentate ligands. Spectroscopic data for the complexes (IR, 1H and 119Sn NMR and mass spectra) are discussed and related to structural information.  相似文献   

17.
The monoribbed-functionalized clathrochelate with two dopamine residues in one of the three dioximate fragments was synthesized by the reaction of the dichloride clathrochelate FeBd2(Cl2Gm)(BF)2 precursor (Bd2− is the α-benzyldioxime anion, and Gm is the glyoxime residue) with PhB-protected dopamine in the presence of Et3N. The MALDI-TOF mass spectrometry data showed that the complex synthesized is an efficient receptor for boric acid. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1079–1084, July, 2006.  相似文献   

18.
Phosphate esters provide a rigid and stable polymeric backbone in nucleic acids. Metal complexes with phosphate ester groups have been synthesized as structural and spectroscopic models of phosphate‐containing enzymes. Dinucleating ligands are used extensively to synthesize model complexes since they provide the support required to stabilize such complexes. The crystal structures of two dinuclear CoII complexes, namely bis(μ‐diphenyl phosphato‐κ2O :O ′)bis({2‐methoxy‐N ,N‐bis[(pyridin‐2‐yl)methyl]aniline‐κ4N ,N ′,N ′′,O }cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C19H19N3O)2](ClO4)2, and bis(μ‐diphenyl phosphato‐κ2O :O ′)bis({N ,N‐bis[(pyridin‐2‐yl)methyl]quinolin‐8‐amine‐κ4N ,N ′,N ′′,O }cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C21H18N4)2](ClO4)2, with tetradentate 2‐methoxy‐N ,N‐bis[(pyridin‐2‐yl)methyl]aniline (L 1) and N ,N‐bis[(pyridin‐2‐yl)methyl]quinolin‐8‐amine (L 2) ligands are reported. The complexes have similar structures, with distorted octahedral geometries around the metal centres. Both are centrosymmetric (Z ′ = 0.5), with the CoII centres doubly bridged by diphenyl phosphate ester groups. A number of aromatic–aromatic interactions are present and differ between the two complexes as the anisole group in L 1 is replaced by a quinoline group in L 2. A detailed study of these interactions is presented.  相似文献   

19.
The reactions of two diaminotriazine ligands 2,4‐diamino‐6‐(2‐pyridyl)‐1,3,5‐triazine (2‐pydaT) and 6‐phenyl‐2,4‐diamino‐1,3,5‐triazine (PhdaT) with ruthenium–arene precursors led to a new family of ruthenium(II) compounds that were spectroscopically characterized. Four of the complexes were cationic, with the general formula [(η6‐arene)Ru(κ2N,N‐2‐pydaT)Cl]X (X=BF4, TsO; arene=p‐cymene: 1.BF4 , 1.TsO arene=benzene: 2.BF4 , 2.TsO ). The neutral cyclometalated complex [(η6p‐cymene)Ru(κ2C,N‐PhdaT*)Cl] ( 3 ) was also isolated. The structures of complexes 2.BF4 and 3.H2O were determined by X‐ray diffraction. Complex 1.BF4 underwent a partial reversible‐aquation process in water. UV/Vis and NMR spectroscopic measurements showed that the reaction was hindered by the addition of NaCl and was pH‐controlled in acidic solution. At pH 7.0 (sodium cacodylate) Ru–Cl complex 1.BF4 was the only species present in solution, even at low ionic strength. However, in alkaline medium (KOH), complex 1.BF4 underwent basic hydrolysis to afford a Ru–OH complex ( 5 ). Fluorimetric studies revealed that the interaction of complex 1.BF4 with DNA was not straightforward; instead, its main features were closely linked to ionic strength and to the [DNA]/complex ratio. The bifunctional complex 1.BF4 was capable of interacting concurrently through both its p‐cymene and 2‐pydaT groups. Cytotoxicity and genotoxicity studies showed that, contrary to the expected behavior, the complex species was biologically inactive; the formation of a Ru–OH complex could be responsible for such behavior.  相似文献   

20.
Zinc Complexes of a New N, N, O Ligand The tridentate ligand N, N(2‐dimethylaminoethyl)‐3, 5‐di‐tert.‐butyl‐salicylaldimine ( L H) results from the corresponding salicylic aldehyde and N, N‐dimethyl ethylenediamine. With zinc salts it forms the mononuclear halide complexes [ L ZnCl ˙ CH3OH] ( 1 ) and [ L ZnI ˙ CH3OH] ( 2 ) and the presumably polymeric acetate [ L ZnOCOCH3] ( 3 ). With diethyl zinc and diphenylphosphoric acid it yields the phosphate complex [ L Zn‐OPO(OPh)2 ˙ CH3OH] ( 4 ). The coordination of the complexes, which is between trigonal bipyramidal and square pyramidal, and the character of the five donors in the phosphate complex represent the transition state of a hydrolytic substrate cleavage in a zinc enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号