首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three kinds of polycarboxylate ether (PCE) polymers with the same length of side chains but different backbone length were synthesized by aqueous free radical polymerization. Adding counter-ions (i.e., Na+, Ca2+) to dilute PCE solutions was found to induce a more complicated conformational change, since the screening of the electrostatic intramolecular repulsion and the different complexation behaviors of Ca2+ with carboxylic groups. Further characterization on the adsorption indicated that the differences of the adsorption ability resulted from the difference in the solution conformation of PCE molecule. PCE of a medium backbone length studied herein possesses a more extended polymer backbone due to the intermolecular steric hindrance, which result in more carboxylic groups could be accessible for adsorption. Obviously, the solution conformation of PCE strongly impacts the accessible carboxylic group contribution to adsorption. In this way it may provide a new insight to design the polymer structures of PCE with superior adsorption ability.  相似文献   

2.
Polyurethanes were modified using monobenzyloxy polyethylene glycol (BPEG) which possesses a bulky hydrophobic benzyloxy group at one end and a hydroxyl group at the other end as a preconstructed BPEG layer, and poly(ethylene glycol) (PEG) and monomethoxyl poly(ethylene glycol) (MPEG) with various chain lengths as fillers. Our objective was to investigate the effect of PEG graft density and conformation on protein adsorption at PEGlated surface. The graft density was estimated by a chemical titration method. The combination of ATR-FTIR, AFM and titration results provide evidences that the graft density can be increased by backfilling PEG or MPEG to a BPEG layer. However, fibrinogen and albumin adsorption significantly increased on all surfaces after PEG or MPEG backfilling. We conclude that the conformation of hydrophobic benzyloxy end groups of the BPEG layer plays a key role. The benzyloxy end groups of preconstructed PEG chains stretch to the surface after PEG backfilling, which possibly accounts for the observed increase in protein adsorption. The BPEG conformation change after backfilling with PEG or MPEG was also suggested by contact angles. Additionally, protein adsorption was slightly influenced by the length of filler, suggesting a change in surface morphology.  相似文献   

3.
The efficiency of a pre-absorbed bovine serum albumin (BSA) layer in blocking the non-specific adsorption of different proteins on hydrophobic and hydrophilic surfaces was evaluated qualitatively and quantitatively using infrared reflection spectroscopy supported by spectral simulations. A BSA layer with a surface coverage of 35% of a close-packed monolayer exhibited a blocking efficiency of 90–100% on a hydrophobic and 68–100% on a hydrophilic surface, with respect to the non-specific adsorption of concanavalin A (Con A), immunoglobulin G (IgG), and staphylococcal protein A (SpA). This BSA layer was produced using a solution concentration of 1 mg/mL and 30 min incubation time. BSA layers that were adsorbed at conditions commonly employed for blocking (a 12 h incubation time and a solution concentration of 10 mg/mL) exhibited a blocking activity that involved competitive adsorption–desorption. This activity resulted from the formation of BSA–phosphate surface complexes, which correlated with the conformation of adsorbed BSA molecules that was favourable for blocking. The importance of optimisation of the adsorbed BSA layer for different surfaces and proteins to achieve efficient blocking was addressed in this study.  相似文献   

4.
The adsorption of a zwitterionic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-block-poly(methacrylic acid) (PDEA59-PMAA50), at the silica/aqueous solution interface has been characterised as a function of pH. In acidic solution, this copolymer forms core-shell micelles with the neutral PMAA chains being located in the hydrophobic cores and the protonated PDEA chains forming the cationic micelle coronas. In alkaline solution, the copolymer forms the analogous inverted micelles with anionic PMAA coronas and hydrophobic PDEA cores. The morphology of the adsorbed layer was observed in situ using soft-contact atomic force microscopy (AFM): this technique suggests the formation of a thin adsorbed layer at pH 4 due to the adsorption of individual copolymer chains (unimers) rather than micelle aggregates. This is supported by the remarkably low dissipation values and the relatively low degrees of hydration for the adsorbed layers, as estimated using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry (OR). In alkaline solution, analysis of the adsorption data suggests a conformation for the adsorbed copolymers where one block projects normal to the solid/liquid interface; this layer consists of a hydrophobic PDEA anchor block adsorbed on the silica surface and an anionic PMAA buoy block extending into the solution phase. Tapping mode AFM studies were also carried out on the silica surfaces after removal from the copolymer solutions and subsequent drying. Interestingly, in these cases micelle-like surface aggregates were observed from both acidic and alkaline solutions. The lateral dimension of the aggregates seen is consistent with the corresponding hydrodynamic diameter of the copolymer micelles in bulk solution. The combination of the in situ and ex situ AFM data provides evidence that, for this copolymer, micelle aggregates are only seen in the ex situ dry state as a result of the substrate withdrawal and drying process. It remains unclear whether these aggregates are caused by micelle deposition at the surface during the substrate withdrawal from the solution or as a result of unimer rearrangements at the drying front as the liquid recedes from the surface.  相似文献   

5.
高分子表面活性剂在固/液界面上的吸附形态   总被引:8,自引:0,他引:8  
曹亚  李惠林 《物理化学学报》1999,15(10):895-899
采用紫外光谱、XPS研究了羧甲基纤维素型高分子表面活性剂在硅胶 /水界面上的吸附形态 ,结果表明随着高分子表面活性剂溶液浓度增大 ,分子在硅胶表面的吸附由单层逐渐变为多层 ,生成半胶束结构 .  相似文献   

6.
The flow of KCl solutions through thin quartz capillaries coated with an adsorbed layer of a cationic polyelectrolyte (CPE), poly(dimethyldiallylammonium chloride) (molecular mass M = 500000), is studied. It is found that the adsorption layer is soft and its thickness depends on shear stress generated by the liquid flow through the capillary. The hydrodynamic thickness of the CPE adsorption layer is 80–90 nm at low flow rates of a solution, and it decreases to values comparable with the experimental error at high flow rates. The dried adsorption layer appears to be hydrophobic (the advancing contact angle is about 80°); in these capillaries, the flow rate of a KCl solution is increased that can be interpreted as a solution slip on the surface of CPE adsorption layer. The long-term contact of the dried CPE adsorption layer with KCl solution, probably, results in the swelling of the adsorption layer, which is accompanied by a decrease in the contact angle and ζ potential of the adsorption layer surface as calculated from the streaming potential of the same solution.  相似文献   

7.
The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the β-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of the electrostatic repulsion and the lack of covalent disulfide interchange reactions. This study reports new information on the secondary and tertiary structural changes of α-La upon adsorption to oil-water interfaces. It also presents new results on the physical stability of α-La stabilized emulsions during heating and at moderate ionic strength (120 mM NaCl). The results broaden our understanding of the factors controlling protein structural change at emulsion interfaces and how this affects emulsion stability.  相似文献   

8.
Nonionic polyethylene oxide (PEO) and anionic polyacrylamide (PAM) flocculation of kaolinite dispersions has been investigated at pH 7.5 in the temperature range 20-60 degrees C. The surface chemistry (zeta potential), particle interactions (shear yield stress), and dewatering behavior were also examined. An increase in the magnitude of zeta potential of kaolinite particles, in the absence of flocculant and at a fixed PEO and PAM concentration, with increasing temperature was observed. The zeta potential behavior of the flocculated particles indicated a decrease in the adsorbed polymer layer thickness, while at the same time, however, the adsorbed polymer density showed a significant increase with increasing temperature. These results suggest that polymer adsorption was accompanied by temperature-influenced conformation changes. The hydrodynamic diameter and supernatant solution viscosity of both polymers decreased with increasing temperature, consistent with a change in polymer-solvent interactions and conformation, prior to adsorption. The analysis of the free energy (DeltaG(ads)) of adsorption showed a strong temperature dependence and the adsorption process to be more entropically than enthalpically driven. The polymer conformation change and increased negative charge at the kaolinite particle surface with increasing temperature resulted in decreased polymer bridging and flocculation performance. Consequently, the shear yield stress and the rate and the extent of dewatering (consolidation) of the pulp decreased significantly at higher temperatures (>40 degrees C). The temperature effect was more pronounced in the presence of PEO than PAM, with 40 and 20 degrees C indicated as the optima for enhanced performance of the latter and former flocculants, respectively. The results demonstrate that a temperature-induced conformation change, together with polymer structure type, plays an important role in flocculation and dewatering behavior of kaolinite dispersions.  相似文献   

9.
Wang J  Buck SM  Chen Z 《The Analyst》2003,128(6):773-778
The air-BSA solution interface has been investigated by various techniques for years. From these studies we know that BSA molecules segregate at the BSA solution-air interface, and the surface coverage increases with the increase of the bulk solution concentration. However, questions still remain as to whether the protein changes conformation, orientation, or a combination of the two upon adsorption. In this paper, by using sum frequency generation (SFG) vibrational spectroscopy we found that the conformation of interfacial BSA molecules changes dramatically at the solution-air interface, compared to that of the native BSA in solution. The hydrophobic methyl groups of BSA molecules at this interface tend to align along the surface normal. The degree of such conformational changes of surface BSA molecules depend on the surface coverage, indicating that the protein-protein interaction plays a very important role in determining the conformation of interfacial protein molecules. At very low surface concentration, the adsorbed BSA molecules unfold substantially. Our results can provide a molecular interpretation of results obtained from other studies such as protein layer thickness and surface tension measurements of protein solution.  相似文献   

10.
This work focuses on the synthesis and characterization of porous silica monolith-based adsorbent materials. Materials with bimodal porosity (macro and meso) were prepared through a sol–gel process. The capacity of adsorption of organic molecules was ensured by grafting of hydrophobic organic coating on the silica surface. Alkylsilane chains or lauryl acrylate polymer were used for this purpose. The adsorption kinetic behavior of the produced materials was assessed through benzophenone adsorption studies in aqueous media. The results have shown that the macropore size of the monoliths had no effect on the adsorption capacity. The thicker organic layer prepared by polymerization of lauryl acrylate has decreased the adsorption kinetics without affecting the total adsorption capacity. The over-coating with additional external layer of hydrogel further slowed the diffusion of benzophenone thus better matches the passive-sampler requirements.  相似文献   

11.
The conformation of a polyester, poly(ethylene o-phthalate), of relatively low molecular weight was studied after adsorption. The extension of the adsorbed molecule in a poor solvent on several planar metal surfaces was studied by ellipsometry and the fraction p of attached groups on colloidal silica particles in a good solvent was determined by the shift in the infrared absorption frequency between free and adsorbed carbonyl groups. In contrast to previously reported results for polystyrene, the extension normal to the surface remained constant (~70 A.) while the concentration of polymer in the adsorbed film increased during the adsorption period. The value of p (0.34 for MW = 5400) is relatively high and was independent of surface population for the range of solution concentrations measured. Differences between these results and those for polystyrene are interpreted as resulting from differences in interaction energy and chain stiffness.  相似文献   

12.
The adsorption and activity of Thermomyces lanuginosus lipase (TLL) was measured with dual polarization interferometry (DPI) and confocal microscopy at a hydrophilic and hydrophobic surface. In the adsorption isotherms, it was evident that TLL both had higher affinity for the hydrophobic surface and adsorbed to a higher adsorbed amount (1.90 mg/m2) compared to the hydrophilic surface (1.40–1.50 mg/m2). The thickness of the adsorbed layer was constant (3.5 nm) on both surfaces at an adsorbed amount >1.0 mg/m2, but decreased on the hydrophilic surface at lower surface coverage, which might be explained by partially unfolding of the TLL structure. However, a linear dependence of the refractive index of the adsorbed layer on adsorbed amount of TLL on C18 surfaces indicated that the structure of TLL was similar at low and high surface coverage. The activity of adsorbed TLL was measured towards carboxyfluorescein diacetate (CFDA) in solution, which upon lipase activity formed a fluorescent product. The surface fluorescence intensity increase was measured in a confocal microscope as a function of time after lipase adsorption. It was evident that TLL was more active on the hydrophilic surface, which suggested that a larger fraction of adsorbed TLL molecules were oriented with the active site facing the solution compared to the hydrophobic surface. Moreover, most of the activity remained when the TLL surface coverage decreased. Earlier reports on TLL surface mobility on the same surfaces have found that the lateral diffusion was highest on hydrophilic surfaces and at low surface coverage of TLL. Hence, a high lateral mobility might lead to a longer exposure time of the active site towards solution, thereby increasing the activity against a water-soluble substrate.  相似文献   

13.
The possible molecule conformation of a new type of polymer surfactant at air/solid interface, acrylamide‐poly(oxyethylene alkyl ether)acrylate‐anionic monomer random copolymers, was studied by X‐ray photoelectron spectroscopy in detail. By means of changing the detection angle, group composition at surface layer in thickness of 0 ∼ 2.5 nm can be obtained. The results show that the surface activity of the copolymers related closely with the conformation of the groups of the copolymers. The hydrophobic backbone of the copolymer plays the most important role in enhancing surface activity. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2297–2302, 1999  相似文献   

14.
Hydroxyethyl cellulose and its hydrophobically modified derivatives are widely used in many industrial areas such as pharmaceuticals, cosmetics, textiles, paint and mineral industries. However, the interaction mechanisms of these biopolymers and solids have not been established. In this work, the interaction mechanism and conformation of hydrophobically modified ethyl(hydroxyethyl) cellulose (C(14)-EHEC) have been investigated using spectroscopic, AFM and allied techniques. Comparison was made with corresponding unmodified analogue in order to investigate the effects of the hydrophobic modification. Electrokinetic studies showed that polysaccharides adsorption decreased the negative zeta potential of talc but did not reverse the charge. EHEC adsorption on talc was not found to be affected significantly by changes in solution conditions such as pH and ionic strength, ruling out electrostatic force as the controlling factor. However, HM-EHEC adsorption was found to increase markedly with increase in ionic strength from 0.1 to 1 suggesting a role for the hydrophobic force in this adsorption process. Fluorescence spectroscopic studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Urea, a hydrogen bond breaker, reduced the adsorption of HM-EHEC on talc markedly. In FTIR study, the changes in the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and therefore support strong hydrogen bonding of HM-EHEC on the solid surface. Moreover, Langmuir modeling of the adsorption isotherms suggests hydrogen bonding to be a major force for the adsorption of EHEC and C(14)-EHEC on solid since the adsorption free energies of these polymers were close to that for hydrogen bond formation. All of the above results suggest that the main driving force for EHEC adsorption on talc is hydrogen bonding rather than electrostatic interaction or hydrophobic force. For hydrophobically modified C(14)-EHEC, hydrophobic force plays a synergetic role in adsorption along with hydrogen bonding. From computer modeling and AFM imaging, it is proposed that C(0)-EHEC and C(14)-EHEC adsorb flat on talc with ethylene oxide side chains and hydrophobic groups protruding out from the surface into bulk water phase.  相似文献   

15.
Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined. When adsorption occurs onto the hydrophilic surface, FN molecules keep their native conformation independent of the adsorption conditions, but the amount of adsorbed FN increases with time and the bulk concentration. Although the protein surface density is the same on the hydrophobic PS surface, this has a strong impact on the average conformation of the adsorbed FN layer. Indeed, interfacial hydration changes induced by adsorption onto the hydrophobic surface lead to a decrease in unhydrated beta-sheet content and cause an increase in hydrated beta-strand and hydrated random domain content of adsorbed FN. This conformational change is mainly dependent on the bulk concentration. Indeed, at low bulk concentrations, the secondary structures of adsorbed FN molecules undergo strong unfolding, allowing an extended and hydrated conformation of the protein. At high bulk concentrations, the molecular packing reduces the unfolding of the stereoregular structures of the FN molecules, preventing stronger spreading of the protein.  相似文献   

16.
Surfaces grafted with poly(methyl methacrylate) (PMMA) and streptavidin were synthesized through click chemistry to investigate the role of surface stiffness on protein adsorption as the hydrophilic and hydrophobic surface coverage of the substituents vary. Surface topographies coupled with the nanoindentation results indicated that, with the appropriate selections of polymer coverage and chain length, the extent of non-specific protein adhesion could be controlled by the hydrophobic interactions between PMMA, biotin, and streptavidin. It was shown that, when the molecular weight and stiffness of PMMA was close to that of streptavidin, patchy PMMA morphologies were obtained, which help inhibit the non-specific adsorption of streptavidin.  相似文献   

17.
The effects of charge density, pH, and salt concentration on polyelectrolyte adsorption onto the oxidized surface of silicon wafers were studied using stagnation point adsorption reflectometry and quartz crystal microgravimetry. Five different polyelectrolytescationic polyacrylamides of four charge densities and one cationic dextranwere examined. The adsorption kinetics was characterized using each technique, and the adsorption kinetics observed was in line with the impinging jet theory and the theory for one-dimensional diffusion, respectively. The polyelectrolyte adsorption increased with pH as an effect of the increased silica surface charge. A maximum in the saturation adsorption for both types of polyelectrolytes was found at 10 mM NaCl concentration. A significant adsorption also occurred at 1 M NaCl, which indicated a significant nonionic contribution to the adsorption mechanism. The fraction of solvent in the adsorbed layer was determined to be 70-80% by combining the two analysis techniques. This indicated a loose structure of the adsorbed layer and an extended conformation at the surface, favoring loops and tails. However, considering the solution structure with a hydrodynamic diameter larger than 100 nm for the CPAM and a thickness of the adsorbed layer on the order of 10 nm, the results showed that the adsorption is accompanied by a drastic change in polymer conformation. Furthermore, this conformation change takes place on a time scale far shorter than seconds.  相似文献   

18.
Adsorption of mycotoxins by organozeolites   总被引:3,自引:0,他引:3  
Adsorption of zearalenone (ZEN), ochratoxin A (OCHRA) and aflatoxin B1 (AFB1) on natural zeolite, clinoptilolite, modified with different amounts of octadecyldimethylbenzyl ammonium (ODMBA) ions was investigated. Results showed that adsorption of hydrophobic ionizable ZEN on unmodified zeolite tuff was very low and that adsorption on organozeolites increased with increasing hydrophobicity of the zeolitic surface. The adsorption was independent of the form of ZEN in solution and the solution pH, indicating that hydrophobic interactions with ODMBA are responsible for ZEN adsorption. Adsorption of low polar ionizable OCHRA on organozeolites also increased with increasing hydrophobicity of the zeolitic surface, however, OCHRA showed moderate adsorption on unmodified zeolitic tuff at pH 3. OCHRA adsorption on unmodified zeolite as well as on lower surface coverage of organozeolite was dependent on the form of OCHRA in solution; there was a decrease of adsorption at high pH, where OCHRA is in the anionic form. It indicated that at acidic pH, low surface coverage allows some combination of hydrophobic interaction with ODMBA and interactions with the surface of the zeolite. At higher surface coverage, the OCHRA adsorption was higher and practically independent of pH, indicating that the hydrophobic interactions of OCHRA with ODMBA are responsible for its adsorption. Nonionizable low polar AFB1 had a high affinity for the unmodified zeolitic tuff and the adsorption of AFB1 was greatly reduced for organozeolites, indicating that AFB1 does not have high tendency for hydrophobic interactions with ODMBA. pH dependence of AFB1 adsorption, while AFB1 has the same form at all pHs, demonstrated that the surface modification of the zeolite depends on pH and that these modifications have influence on its adsorption. The calculated dipole moments of neutral mycotoxin molecules: AFB1-9.5D, OCHRA-6.9D and ZEN-2.2D are in qualitative agreement with adsorption experimental data.  相似文献   

19.
Protein-polymer association in solution driven by a short-range attraction has been investigated using a simple coarse-grain model solved by Monte Carlo simulations. The effect of the spatial distribution of the hydrophobic surface residues of the protein on the adsorption of weakly hydrophobic polymers at variable polymer concentration, polymer length, and polymer stiffness has been considered. Structural data on the adsorbed polymer layer and thermodynamic properties, such as the free energy, energy, and entropy, related to the protein-polymer interaction were calculated. It was found that a more heterogeneous distribution of the surface residues promotes adsorption and that this also applies for different polymer concentrations, polymer chain lengths, and polymer flexibilities. Furthermore, the polymer adsorption onto proteins with more homogeneous surface distributions displayed larger sensitivity to polymer properties such as chain length and flexibility. Finally, a simple relation between the adsorption probability and the change in the free energy was found and rationalized by a simple two-state adsorption model.  相似文献   

20.
侧链型偶氮聚电解质自组装和膜结构研究   总被引:5,自引:1,他引:4  
研究了4种侧链型偶氮聚电解质的自组装过程及其对自组装膜结构的影响.用聚电解质上的偶氮基团作为“探针”,研究了自组装过程中出现的生色团取向、解吸附和非线性增长等现象.这些侧链型偶氮聚电解质均具有较好的自组装性,但其自组装行为有很大差异.在不同的pH条件下,聚电解质的电离程度不同,导致吸附过程和自组装膜结构亦明显不同.自组装膜的增长和结构取决于体系中吸附和解吸的平衡.偶氮生色团端基的亲水或疏水性对自组装膜的增长有明显的影响.偶氮聚电解质自组装过程不同阶段出现的非线性增长现象,分别反映了基底、溶液性质和聚电解质结构等因素的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号