首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Li J  Zhang Y  Cai W  Shao X 《Talanta》2011,84(3):679-683
Analysis of metal ions in environment is of great importance for evaluating the risk of heavy metal to public health and ecological safety. A method for simultaneous determination of metal ions in water samples was developed by using adsorption preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). A high capacity adsorbent of thiol-functionalized magnesium phyllosilicate, named Mg-MTMS, was prepared by co-condensation for preconcentration of Hg2+, Pb2+ and Cd2+ in aqueous solutions. After adsorbing the analytes onto the adsorbent, NIRDRS was measured and PLS models were established for fast and simultaneous quantitative prediction. Because the interaction of the ions with the functional group of the adsorbent can be reflected in the spectra, the models built with the samples prepared by river water were proven to be efficient enough for precise prediction. The determination coefficients (R2) of the validation samples for the three ions were found as high as 0.9197, 0.9599 and 0.9861, respectively. Furthermore, because the high adsorption efficiency of Mg-MTMS, the detected concentrations are as low as milligrams per liter for the three ions, and the concentration can be further reduced. Therefore, the feasibility of quantitative analysis metal ions in river water by NIRDRS is proven and this may provide a new way for fast simultaneous determination of trace metals in environmental waters.  相似文献   

2.
针对近红外光谱技术的检出限高和金属离子在近红外区无信号响应的问题, 合成了巯基聚倍半硅氧烷微球(PMPSQ), 用以高效富集水溶液中的微量汞(Ⅱ)和银(Ⅰ)离子. 通过金属离子与巯基官能团螯合从而获得相应的近红外信号响应, 采集吸附了金属离子的PMPSQ的近红外漫反射光谱, 采用偏最小二乘法建立了定量校正模型. 结果表明, 采用巯基微球富集结合近红外光谱技术可以同时测定水中浓度分别为0.16~1.80 mg/L的汞(Ⅱ)离子和0.15~1.70 mg/L的银(Ⅰ)离子.  相似文献   

3.
Nan Sheng 《Talanta》2009,79(2):339-683
Near-infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool and used in various fields, it is seldom, however, used in the analysis of metal ions in solutions. A method for quantitative determination of metal ions in solution is developed by using resin adsorption and near-infrared diffuse reflectance spectroscopy (NIRDRS). The method makes use of the resin adsorption for gathering the analytes from a dilute solution, and then NIRDRS of the adsorbate is measured. Because both the information of the metal ions and their interaction with the functional group of resin can be reflected in the spectrum, quantitative determination is achieved by using multivariate calibration technique. Taking copper (Cu2+), cobalt (Co2+) and nickel (Ni2+) as the analyzing targets and D401 resin as the adsorbent, partial least squares (PLS) model is built from the NIRDRS of the adsorbates. The results show that the concentrations that can be quantitatively detected are as low as 1.00, 1.98 and 1.00 mg L−1 for Cu2+, Co2+ and Ni2+, respectively, and the coexistent ions do not influence the determination.  相似文献   

4.
A method for quantitative determination of metal element in aqueous solution was developed by using adsorption and diffuse reflectance near‐infrared spectroscopy (DRNIRS). In this method, the analyte is firstly adsorbed onto the resin from the dilute solution, and then the adsorbed analyte is directly determined in the sorbent by using DRNIRS. Enrichment of the analyte is achieved by the adsorption from the dilute solution, and quantitative determination is accomplished by using multivariate calibration technique. Taking chromium(VI) in river water as the analytical target, adsorption conditions and the partial least squares (PLS) model was optimized. The results show that chromium(VI) can be immobilized onto the adsorbent and quantitatively measured by DRNIRS and multivariate calibration. With cross validation and external validation, the correlation coefficient between the reference and predicted concentration was found to be above 0.98 in the range of 0.75–29.90 mg·L−1 for the PLS model, and the interference of the coexisting matrix was eliminated with the aid of multivariate calibration.  相似文献   

5.
该文以咪唑型离子液体作为原料制备吸附剂富集稀溶液中的木犀草素,利用竞争性自适应权重(CARS)变量筛选的方法建立了一种快速测定木犀草素的近红外光谱分析方法。考察了吸附剂用量、pH值、振荡时间对吸附效果的影响,并探究了吸附剂的吸附能力;富集木犀草素的吸附剂经近红外漫反射光谱检测,采用CARS变量筛选的方法结合偏最小二乘回归(PLS)建立了木犀草素的定量校正模型。结果表明,吸附剂用量为0.15 g、pH值为7、振荡时间为20 min的最佳条件下,吸附率达90.9%,且该吸附符合Langmuir等温吸附模型,最大吸附量为7.1 mg/g。近红外光谱建模中,与未经CARS变量筛选处理作为对照,对比发现经CARS变量筛选的方法结果更优,并采用连续小波变换(CWT)的光谱预处理进行验证,结果表明经CWT处理后,预测残差(RPD)值增大,说明了模型的可靠性。该方法可有效富集稀溶液中的木犀草素,采用CARS变量筛选结合CWT光谱预处理的近红外光谱方法可实现对稀溶液中木犀草素的灵敏、快捷检测。  相似文献   

6.
A method for quantitative determination of fish sperm deoxyribonucleic acid(fsDNA) was developed by using titanium dioxide(TiO2) as an adsorbent and near-infrared diffuse reflectance spectroscopy(NIRDRS). The selective enrichment of fsDNA was proved by comparing the adsorption efficiency of bovine serum albumin, tyrosine and tryptophan, and the low adsorption background of TiO2 was illustrated by comparing the spectra of four commonly-used inorganic adsorbents(alkaline aluminium oxide, neutral aluminium oxide, nano-hydroxyapatite and silica). The spectral feature of fsDNA can be clearly observed in the spectrum of the sample. Partial least squares(PLS) model was built for quantitative determination of fsDNA using 28 solutions, and 13 solutions with interferences were used for validation of the model. The results showed that the correlation coefficient(R) between the predicted and the reference concentration is 0.9727 and the recoveries of the validation samples are in the range of98.2%–100.7%  相似文献   

7.
1-(2-pryidylazo)-2-naphthol (PAN) immobilized on sodium dodecyl sulfate-coated nano alumina was developed for the preconcentration and determination of metal cations Co (II) from environmental and food samples. The research results displayed that adsorbent has the highest adsorption capacity for Co (II) in this system. Desorption by elution of the adsorbent with 2.0?ml of a mixture of nitric acid and ethanol was carried out. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS) by using a micro sample introduction system. Analytical influencing parameters including pH value, amount of sorbent, equilibrium time, sample volume, volume and concentration of eluent were examined. The effect of common matrix ions has also been investigated and it was found that they had no influence on cobalt preconcentration. Under the optimum experimental conditions, the maximum capacity of sorbent was obtained as 20?mg?g?1. The preconcentration factor and limit of detection were found to be 250 and 0.15?µg?L?1, respectively. This method showed good precision with the relative standard deviation (RSD) of 2.4% and 2.1% in concentrations of 20 and 50?µg?L?1, respectively. The accuracy of the method was evaluated by comparison of results with those obtained by electrothermal atomic absorption spectrometry. This method was successfully applied for preconcentration and determination of Co (II) in environmental and food samples.  相似文献   

8.
A new adsorbent is synthesized on the basis of silica consecutively modified by polyhexamethylene guanidine and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron) for the group preconcentration of Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) followed by determination by inductively coupled plasma atomic emission spectrometry. The adsorbent in the batch mode quantitatively (recovery 98?99%) extracts Fe(III), Al(III) and Cu(II) ions at pH 4.0 and Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) ions at pH 7.0; the time of attainment of an adsorption equilibrium does not exceed 10 min. Consecutive preconcentration at pH 4.0 and 7.0 in the batch and dynamic modes ensures the quantitative separation of Fe(III), Al(III), and Cu(II) from Pb(II), Zn(II), and Mn(II) and their separate determination. The quantitative desorption of metals was attained with 0.5?1.0 M HNO3 (5 or 10 mL). In preconcentration from 200 mL of solution with 5 mL of a desorbing solution, the preconcentration coefficient was equal to 40. The developed procedure was used for the determination of metal ions in river waters of Krasnoyarsk Krai. The results obtained were verified by the added?found method.  相似文献   

9.
A styrene–maleic anhydride copolymer is synthesized, modified in the presence of p-sulfoaniline and formaldehyde, and a new polymer adsorbent is obtained and identified by IR spectroscopy. The ionization constants of ionogenic groups in the adsorbent are determined by the potentiometric method. The adsorption and desorption of lead(II) on the obtained adsorbent are investigated, and optimal conditions of preconcentration are determined. An adsorption–photometric procedure for the determination of lead is proposed, including the adsorption preconcentration of lead(II) from a buffer solution with pH 6 and desorption with a solution of HCl (with the desorption rate of up to 99%). The procedure was used to determine lead in the cattle liver.  相似文献   

10.
The use of rice husks as an alternative adsorbent in an on-line preconcentration system for Cd (II) and Pb (II) determination by flame atomic absorption spectrometry (FAAS) is described. The potential of rice husks as a natural adsorbent was evaluated as a material modified with 0.75 mol l−1 NaOH solution and in the unmodified form. For this task, several techniques such as spectroscopy and thermogravimetry were used for elucidation of possible functional groups responsible for the uptake of Cd (II) and Pb (II). Furthermore, based on adsorption studies and adsorption isotherms applied to the Langmüir model, it was possible to verify that modified rice husks present a higher adsorption capacity for both metals. After establishing this material as a promising natural adsorbent, it was used for on-line preconcentration of Cd (II) and Pb (II) metals. The multivariate optimisation of chemical and flow variables was performed by using a full factorial design (24) including the following factors: preconcentration time, preconcentration flow rate, concentration and volume of eluent. The optimum pH values used for on-line preconcentration were taken from prior univariate experiments. Under optimised conditions for Cd (II) determination (4 min of preconcentration at a 6 ml min−1 preconcentration flow rate, in which comprises 24 ml of preconcentration volume, 200 μl elution volume and 1.0 mol l−1 HNO3 solution as eluent), the system achieved a detection limit of 1.14 μg l−1 and an enrichment factor of 72.4. Similar conditions were used for Pb (II) determination (4 min of preconcentration, 6 ml min−1 preconcentration flow rate, 300 μl elution volume and 1.0 mol l−1 HNO3 solution as eluent) from which a detection limit of 14.1 μg l−1 and enrichment factor of 46.0 were achieved. Also, rice husks have been shown to be a homogeneous and stable adsorbent in which more than 100 preconcentration/elution cycles provide a relative standard deviation (RSD) of less than 6.0% on the analytical signal. The satisfactory accuracy of the method developed was obtained by using spiked water samples (mineral water and lake water) and spiked red wine samples. These values were confirmed by electrothermal atomic absorption spectrometry (ETAAS). The certified reference material [pig kidney (CRM 186)] and the reference material [beech leaves (CRM 100)] were also used.  相似文献   

11.
Silica gel modified with 3-aminopropyltrimethoxysilane was anchored with nicotinaldehyde to prepare a new chelating surface (or matrix). It was synthesized and characterized by elemental analysis, cross-polarization magic-angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy, diffuse reflectance infrared Fourier-transform spectroscopy, nitrogen adsorption–desorption isotherm, Brunauer–Emmett–Teller surface area, and Barrett–Joyner–Halenda pore sizes. The new surface exhibits good chemical and thermal stability as determined by thermogravimetry curves. This new organic–inorganic material was used for preconcentration of Hg(II), Pb(II), Zn(II), and Cd(II) from water prior to their determination by inductively coupled plasma atomic emission spectrometry. The optimum pH for quantitative sorption of these metal ions is in the range of 6–8, and the sorption capacity is in range of 486–1,449 μmol/g. By batch method, 95 % extraction takes ≤30 min. All the metals could be desorbed with a solution of hydrochloric acid (6 N) without loss of the expensive ligand. Solutions of the metal ions were prepared by dissolution of the nitrate solution.  相似文献   

12.
Urinary albumin is an important diagnostic and prognostic marker for cardiorenal disease. Recent studies have shown that elevation of albumin excretion even in normal concentration range is associated with increased cardiorenal risk. Therefore, accurate measurement of urinary albumin in normal concentration range is necessary for clinical diagnosis. In this work, thiourea-functionalized silica nanoparticles are prepared and used for preconcentration of albumin in urine. The adsorbent with the analyte was then used for near-infrared diffuse reflectance spectroscopy measurement directly and partial least squares model was established for quantitative prediction. Forty samples were taken as calibration set for establishing PLS model and 17 samples were used for validation of the method. The correlation coefficient and the root mean squared error of cross validation is 0.9986 and 0.43, respectively. Residual predictive deviation value of the model is as high as 18.8. The recoveries of the 17 validation samples in the concentration range of 3.39-24.39 mg/L are between 95.9%-113.1%. Therefore, the method may provide a candidate method to quantify albumin excretion in urine.  相似文献   

13.
It is found that iron(III), titanium(IV), vanadium(V), copper(II), lead(II), and zinc(II) ions are adsorbed on aluminum oxide modified with Tiron. The adsorption of iron(III) is accompanied by the violet coloration of the adsorbent (560 nm), which indicates the formation of a 1: 2 complex on the adsorbent surface; copper forms a 1: 1 yellowish green complex (430 nm). The group preconcentration of metal ions on this adsorbent in a dynamic mode is possible; the preconcentration rate is 2.5 × 103. The method for the determination of metal ions is proposed based on the adsorption recovery of the elements followed by the direct determination by X-ray fluorescence spectroscopy on the adsorbent surface.  相似文献   

14.
Han QJ  Wu HL  Cai CB  Tang LJ  Yu RQ 《Talanta》2008,76(4):752-757
This paper has demonstrated the study on the adsorption kinetics of orthoxylene on silica gel with a novel experimental methodology. In the method, there was a differential adsorption bed (DAB) where the solid adsorbent always contacted with the same bulk concentration of the adsorbate vapor, and the DAB was monitored with near-infrared diffuse reflectance spectroscopy (NIRDRS) continuously as well as non-invasively. Local partial least squares (PLS) algorithm was suggested to replace normal global PLS method in multivariate calibration models for processing NIRDRS data, because the concentration of the adsorbate on the adsorbent varied greatly as the adsorption process was going on. In this way, we, conveniently as well as promptly, obtained instantaneous adsorption rates of several orthoxylene/silica gel adsorption processes under different conditions like partial pressure of orthoxylene vapor and velocity of gas, and discovered that the adsorption process was physical adsorption, and mainly controlled by external diffusion.  相似文献   

15.
A simple and reliable method has been developed using chelating polymeric adsorbent (PSAHSB) to preconcentration of trace amount of Ni(II) ions from aqueous solutions under static loading conditions, and their determination by Ultraviolet and visible (UV–Vis) absorption spectroscopy. The influences of some analytical adsorption parameters, such as pH, temperature and contact time, the ionization constants of chelating groups in the adsorbent and desorption process were investigated. Maximum adsorption ≥98% was achieved at pH 3–7 after 20 min of contact time and the relative standard-deviation values were ≤5%. Adsorbed metal ions have been desorbed with 10 mL of 2 M HCl acid with the detection limit of 0.0157 μg m−1. The Langmuir and Freundlich isotherm equations were used to describe adsorption behavior of the system at different temperatures. Kinetic and thermodynamic behavior of the adsorbent for Ni(II) ion preconcentration was also studied. The possible adsorption mechanism of Ni (II) ions onto modified adsorbent is also discussed. This method was applied efficiently to remove Ni (II) ions from environmental water samples.  相似文献   

16.
Summary A new chelating adsorbent, zinc silicate-bonded diethyldithiocarbamate (DTC) has been prepared for the separation and preconcentration of some transition metal ions. The distribution coefficients (Kd values) of 15 metal ions have been estimated in solution at various pH's and some quantitative separations have been achieved. The high selectivity for Pd(II) has been utilized for its preconcentration from dilute aqueous solutions; quantitative elution is effected with acidic 4% thiourea solution.  相似文献   

17.
Near-infrared diffuse reflectance spectroscopy (NIRDRS) has been proved to be a convenient and fast quantitative method for complex samples. The high detection limit or the low sensitivity of the method, however, is a big problem obstructing its application in the analysis of low concentration samples. A strategy for quantitative determination of low concentration samples was developed by using NIRDRS. The method takes an adsorbent as a substrate for gathering the analytes from a solution, and uses the multivariate calibration technique for quantitative calculation. So, the detection limit can be improved and the interferences can be eliminated when complex samples are analyzed. Taking benzoic and sorbic acids as the analyzing targets and the alumina as the adsorbent, partial least squares (PLS) model is built from the NIRDRS of the adsorbates. The results show that the concentrations that can be quantitatively detected are as low as 0.011 and 0.013 mg mL(-1) for benzoic and sorbic acids, respectively, and the co-adsorbates do not interfere each other.  相似文献   

18.
Katsumata H  Fujii A  Kaneco S  Suzuki T  Ohta K 《Talanta》2005,65(1):129-134
A sensitive and selective batch adsorption method is proposed for the preconcentration and determination of simazine. Simazine was preconcentrated on diatomaceous earth as an adsorbent and then determined by high-performance liquid chromatography (HPLC). Several parameters on the recovery of the analyte were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 2 using 100 mL of validation solution containing 1.5 μg of simazine and 5 mL of ethanol as an eluent. Recovery of simazine was 89.0 ± 1.6% with a relative standard deviation for seven determinations of 1.5% under optimum conditions. The maximum preconcentration factor was 100 for simazine when 500 mL of sample solution volume was used. The linear range of calibration curve was 1-200 ng mL−1 with a correlation coefficient of 0.996 and the detection limit (3S/N) was 0.3 ng mL−1. The capacity of the adsorbent was also examined and found to be 1.1 mg g−1 for simazine. The proposed method was successfully applied to the determination of simazine in river water with high precision and accuracy.  相似文献   

19.
A new chelating resin, poly(diacetonitrile methacrylamide-co-divinylbenzene-co-vinylimidazole), was synthesized and characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The novel resin was used for the first time as a chelating adsorbent for the preconcentration of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn from various samples by flame atomic absorption spectrometry. The adsorption capacities of the resin were 29.3, 31.6, 29.3, 27.3, 35.5, 31.7, 39.8, and 32.3?mg?g?1 for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn, respectively. The detection limits of the metal ions were from 0.42 to 3.21?µg?L?1. A preconcentration factor of 30 for all metal ions was obtained. The precision of the method as the relative standard deviation was less than or equal to 2.6%. The described method was validated with certified reference materials and fortified real samples. The method was used for the determination of the analytes in well water and wastewater.  相似文献   

20.
针对近红外漫反射光谱(NIRDRS)技术灵敏度低或检出限高的缺点,采用银镜作为吸附基底以改善其灵敏度.银镜的强反射能力不仅能够降低光谱的背景干扰,还能增强光谱的响应信号.研究了NIRDRS技术结合银镜基质用于快速定量分析血清尿素含量的可行性.直接采集富集了血清的银镜基质的NIRDRS光谱,结合光谱预处理和变量选择方法,采用偏最小二乘回归建立了定量校正模型并进行快速预测.结果表明,采用银镜基质结合NIRDRS技术可以准确地测定含量为2.8~26.1 mmol/L的血清尿素,预测值与参考值的相关系数(R2p)为0.9823,样品回收率为86.0%~117.0%,且预测得到的最大误差值低至1.45 mmol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号