首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We have investigated the electrical transport properties of poly(3,4‐ethylenedioxythiophen)/poly(4‐styrene‐sulfonate) (PEDOT:PSS) with PEDOT‐to‐PSS ratios from 1:1 to 1:30. By combining impedance spectroscopy with thermoelectric measurements, we are able to independently determine the variation of electrical conductivity and charge carrier density with PSS content. We find the charge carrier density to be independent of the PSS content. Using a generalized effective media theory, we show that the electrical conductivity in PEDOT:PSS can be understood as percolation between sites of highly conducting PEDOT:PSS complexes with a conductivity of 2.3 (Ωcm)?1 in a matrix of excess PSS with a low conductivity of 10?3 (Ω cm)?1. In addition to the transport properties, the thermoelectric power factors and Seebeck coefficients have been determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
A conductive paper was made of cellulose fibers with a multilayer of polyethyleneimine (PEI) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and the factors to increase the conductivity of the paper were investigated. The adsorption amount and the structure of PEI and PEDOT:PSS multilayer was changed by controlling salt concentration and the number of layers, and inter-contact degree of fibers was controlled by calendering. The adsorption behavior of the polyelectrolytes onto cellulose was evaluated using a quartz crystal microbalance with dissipation monitoring, and the adsorption amount was quantitatively analyzed through Kjeldahl nitrogen analysis and an Inductively Coupled Plasma Optical Emission Spectrometer. The conductivity of the resultant paper was in the range of 10?5–10?4 S/cm without loss of paper strength. The conductivity of the paper increased when the multilayer was formed at low salt concentration and the conductive paper was calendered. It appeared that electron transfer by increased contact between PEDOT:PSS improved the conductivity of the paper.  相似文献   

3.
We present a novel approach to the fabrication of advanced polymeric nanocomposite hydrogels from polyacrylamide (PAAm) by incorporation of graphene‐silver‐polyethylenedioxythiophene‐polystyrene sulfonate (rGO‐Ag‐PEDOT/PSS) by photopolymerization method. Infrared spectroscopy was employed to characterize the structure of the hydrogels. The internal network structure of nanocomposite hydrogels was investigated by scanning electron microscope. Swelling, deswelling, and mechanical properties of the hydrogels were investigated. The compressive strength of nanocomposite hydrogels reaches maximum of 1.71 MPa when the ratio of rGO‐Ag‐PEDOT/PSS to PAAm was 0.3 wt%, which is 1.57 times higher than that of PAAm hydrogels (1.09 MPa). The electrical conductivity of the PAAm‐rGO‐Ag‐PEDOT/PSS hydrogel was found to be 3.91 × 10?5 S cm?1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L~(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm~(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm~(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq~(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.  相似文献   

5.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been studied for a wide range of applications due to its potential as a transparent electrode. Herein, the use of imidazole and its derivatives as a neutralizing additive for PEDOT:PSS dispersion and in‐depth studies of their effects in terms of electrical properties and stability is reported. Although the neutralization in general reduces the electrical conductivity of PEDOT:PSS, the conductivity after imidazole treatment (685.2 S cm?1) is higher than that after treatment of other derivatives. Spectroscopic and thermoelectric studies show that the de‐doping effect resulted in the conductivity reduction. As a trade‐off of the conductivity reduction, greatly enhanced long‐term stability and noncorrosive characteristics are obtained after neutralization. The change in sheet resistance of imidazole‐treated PEDOT:PSS after 500 h under harsh conditions (85 °C and 85% humidity) is half that of the untreated samples, demonstrating the great enhancement of the stability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1530–1536  相似文献   

6.
黄鹏  元利刚  李耀文  周祎  宋波 《物理化学学报》2018,34(11):1264-1271
p-i-n型的钙钛矿太阳能电池中,聚3, 4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)作为最常用的空穴传输层(HTL)材料之一,由于其存在着吸湿性强以及能级与钙钛矿层不匹配等缺点,限制了它的应用。基于此,本文拟采用将左旋多巴(DOPA)和N, N-二甲基亚砜(DMSO)共同掺杂于PEDOT:PSS作为HTL的简单方法制备高性能p-i-n型钙钛矿太阳能电池。研究结果表明,DOPA和DMSO共掺杂PEDOT:PSS可以有效的调节HTL的能级并提高其导电性,器件的能量转化效率由13.35%显著提高到了17.54%。进一步研究发现,相比于未掺杂或单一掺杂的PEDOT:PSS,在DOPA和DMSO共掺杂的PEDOT:PSS上更有利于生长大尺寸、高结晶度的钙钛矿晶体;同时稳态/瞬态荧光和交流阻抗测试表明器件的内部载流子分离和传输更加有效。  相似文献   

7.
CE can efficiently separate poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) complexes and free PSS in dispersions and can be used to estimate the degree of PSS doping. We investigated the doping efficiency of PSS on PEDOT in dispersions using CE and its effect on the conductivity of the resulting PEDOT/PSS films. Results of this study indicate that dispersions containing 1:2.5–3 EDOT:PSS feed ratio (by weight) exhibiting 72–73% PSS doping generate highly processable and highly conductive films. Conductivity can be optimized by limiting the time of reaction to 12 h. At this point of the reaction, the PEDOT/PSS segments, appearing as broad band in the electropherogram, could still exist in an extended coil conformation favoring charge transport resulting in high conductivity. Above a threshold PEDOT length formed at reaction times longer than 12 h, the PEDOT/PSS complex, appearing as spikes in the electropherogram, most likely have undergone a conformational change to coiled core‐shell structure restricting charge transport resulting in low conductivity. The optimal conductivity (5.2 S/cm) of films from dispersions synthesized for 12 h is significantly higher than those from its commercial equivalent Clevios P and other reported values obtained under similar conditions without the addition of codopants.  相似文献   

8.
Nano-composite thin films of poly(3,4-ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT:PSS) with different loading concentrations of multi-walled carbon nanotubes (MWCNT) were deposited on glass substrates using inkjet printing and spin coating techniques. The surface energy of the substrate was modified using an oxygen plasma to achieve different degrees of wetting by the composite solution. We show that the electrical properties strongly depend on the wetting of the substrate and by controlling the wettability, the conductivity of the nano-composite samples can be improved. Based on polymer conductivity, the electrical conductivity of the composite film can be improved or degraded by orders of magnitude with the incorporation of the same concentration of MWCNT. Moreover, electrical measurements show strong correlation between the conductivity of the carbon nanotube network and the resulting nano-composite films. The dependence of electrical properties on the wettability and the conductivity of the composite components could explain the diversity in the electrical behaviour reported in the literature for PEDOT:PSS/MWCNT nano-composite thin films.
Figure
The impact on the morphological and electrical properties of PEDOT:PSS/CNT films as a result of surface wetting properties of the substrate  相似文献   

9.
Stretchable conductive hydrogels have received significant attention due to their possibility of being utilized in wearable electronics and healthcare devices. In this work, a semi-interpenetrating polymer network (SIPN) strategy was employed to fabricate a set of flexible, stretchable and conductive composite hydrogels composed of polyvinyl alcohol (PVA) in the presence of glutaraldehyde as the crosslinker, HCl as the catalyst and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as the conductive medium. The results from FTIR, Raman, SEM and TGA indicate that a chemical crosslinking network and interactions of PVA and PEDOT:PSS exist in the SIPN hydrogels. The swelling ratio of hydrogels decreased with increasing content of PEDOT:PSS. Due to the chemical crosslinking network and interactions of PVA and PEDOT:PSS, PVA networks semi-interpenetrated with PEDOT:PSS exhibited excellent tensile and compression properties. The tensile strength and elongation at breakage of the composite hydrogels with 0.14 wt% PEDOT:PSS were 70 KPa and 239%, respectively. The compression stress of the composite hydrogels with 0.14 wt% PEDOT:PSS at a strain of 50% was about 216 KPa. The electrical conductivity of the hydrogels increased with increasing PEDOT:PSS content. The flexible, stretchable and conductive properties endow the composite hydrogel sensor with a superior gauge factor of up to 4.4 (strain: 100%). Coupling the strain sensing capability to the flexibility, good mechanical properties and high electrical conductivity, we consider that the designed PVA/PEDOT:PSS composite hydrogels have promising applications in wearable devices, such as flexible electronic skin and sensitive strain sensors.  相似文献   

10.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

11.
In this work, the asymmetrical analog of 3,4‐ethylenedioxythiophene (EDOT), thieno[3,4‐b]‐1,4‐oxathiane (EOTT), was synthesized and chemically polymerized first in aqueous solution using poly(styrene sulfonic sodium) (PSS) as the polyelectrolyte to yield poly(thieno[3,4‐b]‐1,4‐oxathiane) (PEOTT)/PSS. As‐formed film exhibited low electrical conductivity (~10?4 S/cm). Alternatively, EOTT together with EDOT (in different molar ratio of 1:1 and 1:5) was copolymerized and the polymer poly(EOTT‐co‐EDOT)/PSS had electrical conductivity of 10?1 S/cm. After dimethyl sulfoxide (DMSO) treatment, the electrical conductivity was enhanced to 100 S/cm; however, the conductivity of the above homopolymer was reduced (~10?5 S/cm). Raman spectroscopy was used to interpret conductivity enhancement or reduction after DMSO treatment. The conductivity decrease of PEOTT/PSS compared to poly(EOTT‐co‐EDOT)/PSS may arise from the conformational change of PEOTT backbone from the quasi‐planar to the distorted planar mode induced by PSS/PSSH through ionic interaction. Kinetic studies revealed that the copolymer had high coloration efficiencies (375 cm2/C), low switching voltages (?0.8 to +0.6 V), decent contrast ratios (45%), moderate response time (1.0 s), excellent stability, and color persistence. An electrochromic device employing poly(3‐methylthiophene) and poly(EOTT‐co‐EDOT)/PSS as the anode and cathode materials was also studied. From these results, poly(EOTT‐co‐EDOT)/PSS would be a promising candidate material for organic electronics. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2285–2297  相似文献   

12.
The interaction between poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and cellulosic fibers was characterized in order to obtain further understanding of the conductivity properties of the modified cellulosic fiber material. Microcrystalline cellulose (MCC) was used as a model surface to study the adsorption behavior at various pH and salt concentrations, while samples of low-conductivity paper, normally used for the production of electrical insulation papers, were dipped into PEDOT:PSS dispersion and air-dried for X-ray photoelectron spectroscopy (XPS) studies. The results showed a strong interaction between the MCC and PEDOT:PSS, which implied a broad molecular distribution of the conducting polymer. With increasing pH, less amount of the conducting polymer was adsorbed whereas the amount adsorbed passed through a maximum value with varying salt concentration. Zeta potential measurement and polyelectrolyte titration were used to determine the surface charge of both suspended MCC particles and dispersed PEDOT:PSS at various pH levels and salt concentrations. Dip-coated paper samples exhibited two peaks in the S(2p) XPS spectra at 168–169 and 164–165 eV which correspond to the sulfur signals of sulfonate (in PSS) and in thiophene (in PEDOT), respectively. It was found that the PEDOT:PSS with a ratio of 1:2.5 was adsorbed more in the base paper than that with a ratio of 1:6. The PEDOT:PSS ratio on the surface of the cellulosic material was higher than that in the bulk liquid for all samples. The results indicated that PEDOT was preferentially adsorbed rather than PSS. The degree of washing of the conducting polymer did not significantly affect the PEDOT enhancement on the surface.  相似文献   

13.
Two‐dimensional (2D) WS2 nanosheets (NSs) as a promising thermoelectric (TE) material have gained great concern recently. The low electrical conductivity significantly limits its further development. Herein, we reported an effective method to enhance the TE performance of WS2 NSs by combining poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS). The restacked WS2 NSs thin film with 1T phase structure obtained by a common chemical lithium intercalation show a high Seebeck coefficient of 98 μV K?1 and a poor electrical conductivity of 12.5 S cm?1. The introduction of PEDOT:PSS with different contents obviously improve the electrical conductivity of WS2 NSs thin films. Although a declining Seebeck coefficient was observed, an optimized TE power factor of 45.2 μW m?1 k?1 was achieved for WS2/PEDOT:PSS composite thin film. Moreover, the as‐prepared WS2/PEDOT:PSS thin film can be easily peeled off and transferred to other substrate leading to a more promising application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 997–1004  相似文献   

14.
Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive aqueous dispersion synthesized by using emulsion polymerization method. To further enhance its solution processability and conductivity of PEDOT derivatives, we proposed to replace the nonconductive PSS with conductive poly[2‐(3thienyl)‐ethoxy‐4‐butylsulfonate] (PTEB) as surfactant for the emulsion polymerization of PEDOT. The reaction involved colloid stabilization and doping in one step, and yielded PEDOT:PTEB composite nanoparticles with high electrical conductivity. Contrary to its counterpart containing nonconductive surfactant, PEDOT: PTEB showed increasing film conductivity with increasing PTEB concentration. The result demonstrates the formation of efficient electrical conduction network formed by the fully conductive latex nanoparticles. The addition of PTEB for EDOT polymerization significantly reduced the size of composite particles, formed stable spherical particles, enhanced thermal stability, crystallinity, and conductivity of PEDOT:PTEB composite. Evidence from UV–VIS and FTIR measurement showed that strong molecular interaction between PTEB and PEDOT resulted in the doping of PEDOT chains. X‐ray analysis further demonstrated that PTEB chains were intercalated in the layered crystal structure of PEDOT. The emulsion polymerization of EDOT using conducting surfactant, PTEB demonstrated the synergistic effect of PTEB on colloid stability and intercalation doping of PEDOT during polymerization resulting in significant conductivity improvement of PEDOT composite nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2536–2548, 2008  相似文献   

15.
Mg O has not been explored as a counter electrode materials for dye-sensitized solar cells(DSSCs)due to its lack of electrical conductivity.However,herein,it is reported that Mg O insulator with conductive poly(3,4-ethylenedioxythiophene):polysty-renesulfonate(PEDOT:PSS)exhibited excellent performance as a counter electrode for DSSCs,leading to a high power conversion efficiency of 7.45%.Furthermore,it was revealed that the interface between Mg O and PEDOT:PSS plays an important electro-catalytic role in the Mg O/PEDOT composite counter electrodes.  相似文献   

16.
Carbon nanotubes (CNTs), either single wall carbon nanotubes (SWNTs) or multiwall carbon nanotubes (MWNTs), can improve the thermoelectric properties of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT?:?PSS), but it requires addition of 30-40 wt% CNTs. We report that the figure of merit (ZT) value of PEDOT?:?PSS thin film for thermoelectric property is increased about 10 times by incorporating 2 wt% of graphene. PEDOT?:?PSS thin films containing 1, 2, 3 wt% graphene are prepared by solution spin coating method. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses identified the strong π-π interactions which facilitated the dispersion between graphene and PEDOT?:?PSS. The uniformly distributed graphene increased the interfacial area by 2-10 times as compared with CNT based on the same weight. The power factor and ZT value of PEDOT?:?PSS thin film containing 2 wt% graphene was 11.09 μW mK(-2) and 2.1 × 10(-2), respectively. This enhancement arises from the facilitated carrier transfer between PEDOT?:?PSS and graphene as well as the high electron mobility of graphene (200,000 cm(2) V(-1) s(-1)). Furthermore the porous structure of the thin film decreases the thermal conductivity resulting in a high ZT value, which is higher by 20% than that for a PEDOT?:?PSS thin film containing 35 wt% SWNTs.  相似文献   

17.
欧阳建勇 《物理化学学报》2018,34(11):1211-1220
因为导电高分子结合了金属与塑料的优点,他们一直受到很大的关注。但是他们的应用受到一些因素的影响,包括他们的电学性质,稳定性和可加工性。近来,导电高分子的性能得到很大的提高。他们在许多领域的重要应用被论证,比如透明电极,可拉伸电极,神经界面,热电转换和能量储存。这篇文章简单综述了导电高分子的电导提高和它们在热电转换,超级电容器和电池的应用。  相似文献   

18.
As conventional organic solvents present inherent toxicity, deep eutectic solvents (DES) have been considered as excellent candidates due to their green characteristics. In this work, thermoelectric properties enhancement of PEDOT:PSS films is achieved by introducing DES as an additive and post‐treatment reagent. Direct addition and post‐treatment approaches lead to a maximum Seebeck coefficient of 29.1 μV K?1 and electrical conductivity of 620.6 S cm?1, respectively. In addition, an optimal power factor is obtained by DES post‐treatment, reaching up to 24.08 μW m?1 K?2, which is approximately four orders of magnitude higher than the pure PEDOT:PSS. Assuming a thermal conductivity of 0.17 W m?1 K?1, the maximum ZT value is estimated to be 0.042 at 300 K. Further, atomic force microscopy and X‐ray photoelectron spectroscopy are performed and suggest that the remarkably enhanced electrical conductivity originates from the removal of the excess insulating PSS and the phase separation between the PEDOT and PSS chains. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 885–892  相似文献   

19.
Abstract

The conductivity of poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) film can be enhanced by more than two orders in magnitude by adding a compound with two or more polar groups, such as ethylene glycol (EG), meso‐erythritol (IUPAC name: 1,2,3,4‐tetrahydroxybutane), or 2‐nitroethanol, into the PEDOT:PSS aqueous solution. The mechanism of the increase in conductivity for PEDOT:PSS has been studied using Raman spectroscopy and atomic force microscope (AFM). Here we propose that the change in conductivity is due to the conformational change of PEDOT chains in the film. In untreated PEDOT:PSS films, coil, linear, or expanded‐coil conformations of the PEDOT chains may be present. In treated PEDOT:PSS films, the linear or expanded‐coil conformations may becomes the dominant form for PEDOT chains. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as the electrode for polymer optoelectronic devices. In this article, we report on the fabrication of polymer light‐emitting diodes (PLEDs) and photovoltaic cells (PVs) made using a highly conductive form of PEDOT:PSS as anode, and we demonstrate its performance relative to that of similar device using indium‐tin oxide (ITO) as the anode.  相似文献   

20.
Functional inks for light-based 3D printing are actively being searched for being able to exploit all the potentialities of additive manufacturing. Herein, a fast visible-light photopolymerization process is showed of conductive PEDOT:PSS hydrogels. For this purpose, a new Type II photoinitiator system (PIS) based on riboflavin (Rf), triethanolamine (TEA), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is investigated for the visible light photopolymerization of acrylic monomers. PEDOT:PSS has a dual role by accelerating the photoinitiation process and providing conductivity to the obtained hydrogels. Using this PIS, full monomer conversion is achieved in less than 2 min using visible light. First, the PIS mechanism is studied, proposing that electron transfer between the triplet excited state of the dye (3Rf*) and the amine (TEA) is catalyzed by PEDOT:PSS. Second, a series of poly(2-hydroxyethyl acrylate)/PEDOT:PSS hydrogels with different compositions are obtained by photopolymerization. The presence of PEDOT:PSS negatively influences the swelling properties of hydrogels, but significantly increases its mechanical modulus and electrical properties. The new PIS is also tested for 3D printing in a commercially available Digital Light Processing (DLP) 3D printer (405 nm wavelength), obtaining high resolution and 500 µm hole size conductive scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号