首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polypyridyl ruthenium(II) complexes [RuII(3-bptpy)(dmphen)Cl]ClO4 (1), [RuII(3-cptpy)(dmphen)Cl]ClO4 (2), [RuII(2-tptpy)(dmphen)Cl]ClO4 (3), and [RuII(9-atpy)(dmphen)Cl]ClO4 (4) {where 3-bptpy?=?4′-(3-bromophenyl)-2,2′:6′,2″-terpyridine, 3-cptpy?=?4′-(3-chlorophenyl)-2,2′:6′,2″-terpyridine, 2-tptpy?=?4′-(2-thiophenyl)-2,2′:6′,2″-terpyridine, 9-atpy?=?4′-(9-anthryl)-2,2′:6′,2″-terpyridine, dmphen?=?2,9-dimethyl-1,10-phenanthroline} have been synthesized and characterized. The DNA-binding properties of the complexes with Herring Sperm DNA have been investigated by absorption titration and viscosity measurements. The ability of complexes to break the pUC19 DNA has been checked by gel electrophoresis. The experimental results suggest that all the complexes bind DNA via partial intercalation. The results also show that the order of DNA-binding affinities of the complexes is 4?<?3?<?2?<?1, confirming that planarity of the ligand in a complex is very important for DNA-binding.  相似文献   

2.
Synthesis and X-ray crystal structures of three new terpyridine-based Pb(II) complexes, {[Pb(ttpy)(μ-AcO)]2}(SCN)2 (1) (ttpy?=?4′-tolyl-2,2′:6′,2″-terpyridine), [Pb(Clphtpy)(AcO)(ClO4)] (2), and [Pb(Clphtpy)(SCN)2] (3) (Clphtpy?=?4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine), are described. The synthesized materials have been characterized, also, by CHN elemental analysis, 1H NMR, and IR spectroscopy. The structural analyses showed that, in the solid state, the coordination number of Pb(II) in 1, 2, and 3 are six, seven, and five, respectively. In the complexes, the lone-pair electrons of Pb(II) are stereochemically active and the coordination geometry of Pb(II) is hemidirected. The structures of the three complexes were compared and the effect of counter ion is described. The antibacterial activity of 1 and previously reported {[Pb(ttpy)(μ-AcO)]2}(PF6)2 (1A) and {[Pb(ttpy)(μ-AcO)I]2} (1B) were tested by minimum inhibitory concentration method to investigate the effect of counter ions on biological activity of the compounds. Also, cytotoxicity test was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay to determine the maximum non-toxic concentration of ttpy, Pb(II), and their complexes to HepG2 cells. Effective lead detoxification was observed for 1, 1A, and 1B.  相似文献   

3.
The water-soluble complex [RuClCp(PPh3)(mPTA)](CF3SO3) reacts with the thiopurines, bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2), to lead to the binuclear ruthenium(II) complexes [{RuCp(PPh3)(mPTA)}2-μ-(LS7,S′7)](CF3SO3)2 where (L = MBTT2? (1), EBTT2? (2), and PBTT2? (3)). All the complexes have been fully characterized by elemental analysis, IR, and multinuclear 1H, 13C{1H}, and 31P{1H} NMR spectroscopy. The cyclic voltammetry of the complexes is characterized by two one-electron oxidative responses (RuII–RuII/RuIII–RuII; RuIII–RuII/RuIII–RuIII) that increase their redox potential when the bis(8-thiotheophylline)-alkyl-bridge growths. The reactivity against DNA and partition coefficient of the complexes were also determined.  相似文献   

4.
Alcohols are oxidized by N‐methylmorpholine‐N‐oxide (NMO), ButOOH and H2O2 to the corresponding aldehydes or ketones in the presence of catalyst, [RuH(CO)(PPh3)2(SRaaiNR′)]PF6 ( 2 ) and [RuCl(CO)(PPh3)(SκRaaiNR′)]PF6 ( 3 ) (SRaaiNR′ ( 1 ) = 1‐alkyl‐2‐{(o‐thioalkyl)phenylazo}imidazole, a bidentate N(imidazolyl) (N), N(azo) (N′) chelator and SκRaaiNR′ is a tridentate N(imidazolyl) (N), N(azo) (N′), Sκ‐R is tridentate chelator; R and R′ are Me and Et). The single‐crystal X‐ray structures of [RuH(CO)(PPh3)2(SMeaaiNMe)]PF6 ( 2a ) (SMeaaiNMe = 1‐methyl‐2‐{(o‐thioethyl)phenylazo}imidazole) and [RuH(CO)(PPh3)2(SEtaaiNEt)]PF6 ( 2b ) (SEtaaiNEt = 1‐ethyl‐2‐{(o‐thioethyl)phenylazo}imidazole) show bidentate N,N′ chelation, while in [RuCl(CO)(PPh3)(SκEtaaiNEt)]PF6 ( 3b ) the ligand SκEtaaiNEt serves as tridentate N,N′,S chelator. The cyclic voltammogram shows RuIII/RuII (~1.1 V) and RuIV/RuIII (~1.7 V) couples of the complexes 2 while RuIII/RuII (1.26 V) couple is observed only in 3 along with azo reductions in the potential window +2.0 to ?2.0 V. DFT computation has been used to explain the spectra and redox properties of the complexes. In the oxidation reaction NMO acts as best oxidant and [RuCl(CO)(PPh3)(SκRaaiNR′)](PF6) ( 3 ) is the best catalyst. The formation of high‐valent RuIV=O species as a catalytic intermediate is proposed for the oxidation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The conjugated carboxy-functionalized terpyridyl bimetal ruthenium complex [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 and [2]rotaxane by self-assembly of [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 with β-cyclodextrin are reported as sensitizer for dye-sensitized solar cells (DSSCs), where tdctpy?=?4′-p-tolyl-4,4″-dicarboxy-2,2′?:?6,2″-terpyridine, dctpy?=?4,4″-dicarboxy-2,2′?:?6,2″-terpyridine and dctpy-(ph)4-dctpy represents a bridging ligand where two 4,4″-dicarboxy-2,2′?:?6′,2″-terpyridine units are connected through four phenyl spacers in the 4′-position. The DSSCs fabricated utilizing these materials give typical electric power conversion efficiency of 0.013–0.523% under air mass (AM) 1.5, 100?mW?cm?2 irradiation at room temperature. The terpyridyl bimetal ruthenium complex [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 with conjugated-bridge chains displayed much higher conversion efficiency compared with the carboxy-functionalized terpyridyl monometal ruthenium complex [tdctpy-Ru-(idctpy)][PF6]2, where idctpy?=?4′-p-iodophenyl-4,4″-dicarboxy-2,2′?:?6,2″-terpyridine. [2]Rotaxane displayed the highest electric power conversion efficiency of 0.523% when β-cyclodextrin was introduced into the conjugated terpyridyl bimetal ruthenium complex and formed [2]rotaxane.  相似文献   

6.
Four heterodimetallic complexes [Ru(Fcdpb)(L)](PF6) (Fcdpb=2‐deprotonated form of 1,3‐di(2‐pyridyl)‐5‐ferrocenylbenzene; L=2,6‐bis‐(N‐methylbenzimidazolyl)‐pyridine (Mebip), 2,2′:6′,2′′‐terpyridine (tpy), 4‐nitro‐2,2′:6′,2′′‐terpyridine (NO2tpy), and trimethyl‐4,4′,4′′‐tricarboxylate‐2,2′:6′,2′′‐terpyridine (Me3tctpy)) have been prepared. The electrochemical and spectroelectrochemical properties of these complexes have been examined in CH2Cl2, CH3NO2, CH3CN, and acetone. These complexes display two consecutive redox couples owing to the stepwise oxidation of the ferrocene (Fc) and ruthenium units, respectively. The potential difference, ΔE1/2 (E1/2(RuII/III)?E1/2(Fc0/+)), decreased slightly with increasing solvent donocity. The mixed‐valent states of these complexes have been generated by electrolysis and the resulting intervalence charge‐transfer (IVCT) bands have been analyzed by Hush theory. Good linear relationships exist between the energy of the IVCT band, Eop, and ΔE1/2 of four mixed‐valent complexes in a given solvent.  相似文献   

7.
Two new MnII and FeII complexes with 4′-(4-pyridyl)-2,2′ : 6′,2″-terpyridine (pyterpy), [Mn(pyterpy)(MeOH)2(OAc)](ClO4) (1) and [Fe(pyterpy)2](SCN)2 · MeOH (2) have been synthesized and characterized by CHN elemental analysis, IR spectroscopy, and structurally analyzed by single-crystal X-ray diffraction. The thermal stabilities of these compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The potentially tetradentate pyterpy ligand is a tridentate donor to both Mn(II) and Fe(II). The non-coordinated pyridyl interacts via O–H ··· N and C–H ··· N hydrogen bonds with adjacent molecules in 1 and 2, respectively, to form inversion symmetric dimers. Compound 1 is further extended into infinite hydrogen bonded chains via pairs of O–H ··· Oacetate hydrogen bonds.  相似文献   

8.
Thiopurines bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2) were reacted with [RuClCp(mPTA)2](CF3SO3)2 in water to afford the bis-ruthenium complexes [{RuCp(mPTA)2}2-μ-(L-κN7,N′7)](CF3SO3)4 (1: L = MBTT; 2: L = EBTT; 3: L = PBTT), which have been characterized by elemental analysis, IR, and multinuclear NMR (1H, 13C{1H}, 31P{1H} and 19F{1H}) spectroscopy). Diffusion experiments for 1 were carried out. Proposed structures for the three complexes were also supported by theoretical calculations. Cyclic voltammetry showed that these complexes are characterized by two one-electron irreversible oxidative response (RuII – RuII/RuIII – RuII; RuIII – RuII/RuIII – RuIII). Complexes showed poor antiproliferative activity against cisplatin-sensitive T2 human cell line and the cisplatin-resistant SKOV3 cell line.  相似文献   

9.
Abstract

New dinuclear asymmetric complexes of ruthenium and rhenium, of formula [(bpy)(CO)3 ReI(4,4′-bpy)RuII/III(NH3)5]3+/4+ have been prepared and characterized by spectroscopic and electrochemical techniques. In the mixed-valent species [ReI, RuIII], the back electron transfer reaction RuII → ReII, that occurs after light excitation, is predicted to be in the Marcus inverted region. This fact is consistent with the observed quenching of the luminiscence of the Re chromophore in [(bpy)(CO)3ReI(4,4′-bpy)RuIII(NH3)5]4+, when compared to the parent complex [(bpy)(CO)3ReI(4,4′-bpy)]+. A theoretical treatment due to Creutz, Newton and Sutin has been successfully applied to predict the electronic coupling element in the mixed-valent complex.  相似文献   

10.
Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Py-Im)(POP)](PF6) (P1), [Cu(Py-BenIm)(POP)](PF6) (P2), and [Cu(Py-c-BenIm)(POP)](PF6) (P3) (Py-Im = 3-methyl-1-(pyridin-2-yl)-1H-imidazolylidene, Py-BenIm = 3-methyl-1-(pyridin-2-yl)-1H-benzo[d]imidazolylidene, Py-c-BenIm = 3-methyl-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazolylidene, POP = bis([2-diphenylphosphino]-phenyl)ether), have been synthesized without transmetalation of the NHC–Ag(I) complex for the first time. The photophysical properties of the resultant NHC–Cu(I) complexes have been systematically investigated via spectroscopic methods. All complexes exhibit good photoluminescence properties with long excited-state lifetimes and moderate quantum yields. Density functional theory and time dependent density functional theory calculations were employed to rationalize the photophysical properties of the NHC–Cu(I) complexes.  相似文献   

11.
Six bis‐tridentate and two tris‐bidentate cyclometalated ruthenium complexes with a 1,2,3‐triazole‐containing ligand have been prepared and characterized. Single‐crystal X‐ray analyses of complexes [(MeOptpy)Ru(Budtab)](PF6) and [(Mebip)Ru(Budtab)](PF6) are presented, where MeOptpy is 4′‐p‐methoxyphenyl‐2,2′:6′,2′′‐terpyridine, Budtab is the 2‐deprotonated form of 1,3‐di(Nn‐butyl‐1,2,3‐triazol‐4‐yl)benzene, and Mebip is bis(N‐methyl‐benzimidazolyl)pyridine. The electronic properties of these complexes are probed by spectroscopic and electrochemical analyses. Time‐dependent density functional theory calculations have been performed to assist the assignment of the absorption spectra.  相似文献   

12.
[Bis(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)(2,2′-bipyridine)iron(II)], [Fe(PDT)2(bpy)]2+ (1), [bis(3-(4-phenyl-2-pyridyl)-5,6-diphenyl-1,2,4-triazine)(2,2′-bipyridine)iron(II)], [Fe(PPDT)2(bpy)]2+ (2), [bis(2,2′-bipyridine)(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II)], [Fe(PDT)(bpy)2]2+ (3), and [bis(2,2′-bipyridine)(3-(4-phenyl-2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II)], [Fe(PPDT)(bpy)2]2+ (4) have been synthesized and characterized. Substitution of the triazine and bipyridine ligands from the complexes by nucleophiles (nu), namely 1,10-phenanthroline (phen) and 2,2′,6,2″-terpyridine (terpy) was studied in a sodium acetate-acetic acid buffer over the pH range 3–6 at 25, 35, and 45°C under pseudo-first order conditions. Reactions are first order in the concentration of complexes 14. The reaction rates increase with increasing [nu] and pH whereas ionic strength has no effect on the rate. Straight-line plots with positive slopes are observed when the kobs values are plotted against [nu] or 1/[H+]. The substitution reactions proceed by dissociative as well as associative paths and the latter path is predominant. Observed low Ea values and negative ΔS# values support the dominance of the associative path. Phenyl groups on the triazine ring modulate the reactivity of the complexes. The π-electron cloud on the phenyl rings stabilizes the charge on metal center by inductive donation of electrons toward the metal center, resulting in a decrease in reactivity of the complex and the order is 1 < 2 < 3 < 4. Density functional theory (DFT) calculations also support the interpretations drawn from the kinetic data.  相似文献   

13.
Two new lead(II) complexes with 4′-(4-tolyl)-2,2′;6′,2″-terpyridine (ttpy), [Pb(ttpy)(µ-AcO)]2(PF6)2 (1) and [Pb(ttpy)(µ-AcO)I]2 (2), have been synthesized and characterized by CHN elemental analysis, 1H NMR, 13C NMR, IR spectroscopy, and structurally analyzed by X-ray single-crystal diffraction. The thermal stability of these compounds has been studied by thermal gravimetric analysis and differential thermal analysis. Single crystal X-ray analysis shows that 1 and 2 are dimeric units with Pb–(µ-AcO)2–Pb-type bridging, and the coordination number in 1 is six and in 2 is seven. The arrangement of donors suggests a gap in the coordination geometry around lead, possibly occupied by stereo-active lone pair of electrons on lead(II), so the coordination sphere is hemidirected. Furthermore, dimeric units are connected by a network of hydrogen bonds and π–π stacking as well. Electrochemical properties of free ligand and complexes have been investigated in the presence of tetrabutyl ammonium perchlorate as supporting electrolyte and by using a glassy carbon electrode. Both lead complexes show irreversible Pb(II) oxidation. Cyclic voltammetry indicates that these processes are diffusion-controlled. The data from electrochemical studies show that the total limiting current of each of the studied complexes corresponds to two-electron transfer.  相似文献   

14.
The syntheses of cationic ruthenium(II) complexes [Ru(Me2-bpy)(PPh3)2RR?][PF6]x {Me2-bpy = 4,4?-dimethyl-2,2?-bipyridine, (3) R = Cl, R? = N≡CMe, x = 1, (4) R = Cl, R? = N≡CPh, x = 1, (5) R = R? = N≡CMe, x = 2} and [Ru(Me2-bpy)(κ2-dppf)RR?][PF6]x {dppf = 1,1?-bis(diphenylphosphino)ferrocene, (6) R = Cl, R? = N≡CMe, x = 1, (7) R = Cl, R? = N≡CPh, x = 1, (8) R = R? = N≡CMe, x = 2} are reported, together with their structural confirmation by NMR (31P, 1H) and IR spectroscopy and elemental analysis, and, in the case of trans-[Ru(Me2-bpy)(PPh3)2(N≡CCH3)Cl][PF6] (3), by X-ray crystallography. Electronic absorption and emission spectra of the complexes reveal that all complexes except 4 and 6 are emissive in the range 370–400 nm with 8 exhibiting an emission in the blue. Cyclic voltammetry studies of 3–8 show reversible or quasi-reversible redox processes at ca. 1 V, assigned to the Ru(II/III) couple.  相似文献   

15.
Abstract

The novel bipyridine–terpyridine–phenazine ligand 6-pyrid-(tetrapyrido[2,3-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine (I) was prepared by condensation reaction of 5,6-diamino-l,10-phenanthroline (4) and 2-(pyrid-2′-yl)-1,10-phenanthroline-5,6-dione (6) and characterized using conventional methods. Poor solubility of the ligand led us to the preparation of its Ru(II) complexes to investigate the change in its solubility for further characterizing the ligand on the metal ion. [Ru(ttp)(I)](PF6)2 complex was prepared using the reaction of the ligand (I) and [Ru(ttp)Cl3] complex, where ttp is 4′-(4-Methylphenyl)-2,2′:6′,2′′-terpyridine. A different route for the preparation of [Ru(ttp)(I)](PF6)2 was introduced. Synthesis of the ligand (I) on the complex by a condensation reaction of [Ru(ttp)(6)](PF6)2, where ligand (6) is 2-(pyrid-2′-yl)-1,10-phenanthroline-5,6-dione, with 5,6-diamino-l,10-phenanthroline (4) was conducted. The spectroscopic measurements of both products which have been obtained through the two different routes were compared. We observed that the NMR, LC-MS, and UV spectra of the both products were identical.  相似文献   

16.
We herein report the synthesis and characterization of Ru(II)/amino acid complexes with general formula [Ru(AA-H)(dppb)(4-mebipy)](PF6), where AA-H means the deprotonated amino acids Gly, Ala, Val, Met, Trp, Tyr, and Ser; dppb is 1,4-bis(diphenylphosphino)butane and 4-mebipy = 4,4′-dimethyl-2,2′-bipyridine. The complexes were characterized by 31P{1H}, 13C, and 1H NMR spectroscopy, as well as X-ray crystallographic analysis of [Ru(DL-Ala-H)(dppb)(4-mebipy)]+, suggesting the presence of diastereoisomers. The complexes exhibit IC50 values against breast tumor cells (MDA-MB-231) comparable with cisplatin. In addition, the Ru(II)-based complex with tryptophan inhibited tumor cell adhesion to collagen type I. Therefore, the use of ruthenium complexes containing amino acids can be an interesting tool for development of new therapeutic agents.  相似文献   

17.
The reactions of oxovanadium(iv) salts with dimethylmalonate anions (H2Dmm — C3H6(COOH)2) and chelating N-donor ligands (2,2′:6′,2″-terpyridine (terpy), 2,2′-bipyridine (bpy)) led to the formation of new mononuclear heterochelate complexes [VO(Dmm)(terpy)]·4H2O (1) and [VO(Dmm)(bpy)(H2O)] (2). The structures of the synthesized compounds were determined by X-ray diffraction. The ESR spectra of the compounds at 293 and 100 K were analyzed and simulated. The photoluminescence properties were investigated.  相似文献   

18.
Two tetrapodal ligands L1 and L2 containing 4,5-diazafluorene units have been synthesized and characterized. Both ligands are composed of two kinds of nonequivalent coordinating sites: one involves the 4-(4,5-diazafluoren-9-ylimino)phenoxy moiety, and the other one involves the 2-(4,5-diazafluoren-9-ylimino)phenoxy moiety. The Ru(II) complexes [(bpy)8Ru4(L1)](PF6)8 and [(bpy)8Ru4(L2)](PF6)8 (bpy = 2,2′-bipyridine) have been obtained by refluxing Ru(bpy)2Cl2·2H2O and each ligand in 2-methoxyethanol. Both complexes exhibit metal-to-ligand charge transfer (MLCT) absorptions at around 443 nm and emission at around 574 nm. Electrochemical studies of both complexes display one Ru(II)-centered oxidation at around 1.33 V and three ligand-centered reductions.  相似文献   

19.
Selective hydrogenation of bicarbonate to formate catalyzed by a ruthenium(III) complex, [RuIII(edta)] (edta4? = ethylenediaminetetraacetate), at moderate H2 pressure (2–8 atm) and temperature (30–40 °C) is reported. Formation of formate, the only reduction product, was identified by 13C NMR analysis of the resultant reaction mixture. Based on the spectral data, a working mechanism (admittedly speculative) involving the formation of ruthenium(III)-bicarbonate complex, [RuIII(edta)(HCO3)]2?, is proposed for the catalytic reaction.  相似文献   

20.
A straightforward synthetic method has been developed to prepare cadmium(II) complexes of 4′-tolyl-2,2′:6′,2″-terpyridine (ttpy) in good yields. These complexes are formulated as {[Cd(ttpy)(NO3)2][Cd2(ttpy)2(NO3)4]} (1), [Cd2(ttpy)2(N3)4]0.5CH3OH?·?0.125H2O (2), and {[Cd(ttpy)(SCN)(CH3COO)][Cd(ttpy)(SCN)2]2} (3). Intermolecular, intramolecular, hydrogen bonding and π–π stacking interactions were observed in the complexes, and are responsible for the arrangement of complexes in the crystal packing and play essential roles in forming different frameworks of 13. The antibacterial activities of the synthesized complexes were tested against three gram positive bacteria and three gram negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号