首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of copper(II) salts with Bpy-TEMPO and Tpy-TEMPO (Bpy-TEMPO = [2,2′]Bipyridinyl-5,5′-dicarboxylic acid bis-[(2,2,6,6-tetramethyl-1-oxy-piperidin-4-yl)-amide]; Tpy-TEMPO = 2,2,6,6-tetramethyl-4-(2,2′:6′,2″-terpyridin-4′-yloxy)piperidin-1-oxyl) gave dinuclear Bpy-TEMPO-Cu2 (1) and mononuclear Tpy-TEMPO-Cu (2), respectively. The Cu(II) complexes were characterized by single crystal X-ray analysis. In 1, Cu(II) has a distorted square pyramidal coordination geometry, with a bridging chloride as the axial ligand. The Cu(II) core in 2 also exhibited a distorted square pyramidal coordination geometry, with one chloride as an axial ligand. Weak interactions such as π-interactions and hydrogen bonds are observed in both complexes. When applied as catalysts for the oxidation of benzyl alcohol to benzaldehyde in air, 1 exhibited higher activity than 2 for reactions in o-xylene at 60°C with DBU as a base. High yield (67%) of benzaldehyde was observed when using 1 as a catalyst in a solution of o-xylene with DBU at 60°C.  相似文献   

2.
Stable ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′‐hydroxychalcones) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′‐hydroxychalcones in benzene under reflux. The new complexes were characterized by analytical and spectroscopic (IR, electronic 1H, 31P and 13C NMR) data. They were assigned an octahedral structure. The complexes exhibited catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide (NMO) as co‐oxidant and were also found to be efficient transfer hydrogenation catalysts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Two new usymmetric bidentate Schiff-base ligands (2-pyridyl-2-furylmethyl)imine (L1) and (2-pyridyl-phenylmethyl)imine (L2) were prepared. The crystal structures of two chloro-bridged complexes [Cu2(μ-Cl)2(L1)2Cl2] (1) and [Mn (μ-Cl)2(L2)] (2) derived from the each ligand have been confirmed by single-crystal X-ray diffraction analysis. The complexes were characterized by IR, elemental analysis and spectroscopic methods. In complex 1, the two copper atoms are five-coordinate involving a square-pyramidal geometry having a N2Cl3 donor set with the two chlorine atoms bridging the two copper atoms. In complex 2, the manganese atoms are both six-coordinate. In contrast to 1, all chlorine atoms in 2 are bridging chlorides and link adjacent manganese atoms together forming 1-D infinite chains.  相似文献   

4.
Treatment of manganese(II) acetate tetrahydrate [Mn(CH3COO)2·4H2O] with one equivalent of 2,2′:6′,2′′-terpyridine (terpy) and two equivalents of potassium tetraphenylimido-diphosphinate K[N(Ph2PO)2] in methanol afforded a mononuclear manganese(II) complex, [(terpy)Mn{η1-O-N(Ph2PO)2}2(H2O)] (1), with two terminal [N(Ph2PO)2]– ligands. Interaction of [Mn(CH3COO)2·4H2O] with one equivalent of terpy in the presence of both K[N(Ph2PO)2] and Ph2PO2K in methanol gave a mononuclear manganese(II) complex [(terpy)Mn(η1-O-O2PPh2){N(Ph2PO)2}] (2) with a chelated [N(Ph2PO)2]– ligand. Treatment of manganese(II) dichloride tetrahydrate [MnCl2·4H2O] with three equivalents of K[N(Ph2PO)2] in methanol resulted in isolation of a mononuclear manganese(III) complex [Mn{η1-O-N(Ph2PO)2}-{N(Ph2PO)2}2] (3) with one terminal and two chelated [N(Ph2PO)2]– ligands. Reaction of [Mn(CH3COO)2·4H2O] with one equivalent of 4′-phenyl-[2,2′:6′,2′′]-terpyridine (4-Ph-terpy) and two equivalents of Ph2PO2K in methanol gave [(4-Ph-terpy)Mn(η1-O-O2PPh2)2(H2O)] (4) with a labile water molecule. Complexes 14 have been spectroscopically characterized and their structures have been established by single-crystal X-ray diffraction. Catalytic behavior of 1 and 4 for sulfide oxidation was also investigated.  相似文献   

5.
The binuclear manganese(II) complex of formula [Mn2(CHZ)2(H2O)2(SO4)2] (CHZ = carbohydrazide) (1) has synthesized in aqueous solution and characterized by elemental analysis, IR, and single crystal X-ray diffraction. The compound 1 crystallizes in monoclinic system, space group P2(1)/n, a = 7.083(1) Å, b = 7.985(1) Å, c = 14.045(2) Å, β = 90.46(1)°, V = 794.42(16) Å3, Z = 2, R = 0.0308 with 1481 reflections. In the title complex, two Mn(II) cations are bonded via the bridging oxygen atoms into a centrosymmetric dimeric unit. The Mn(II) dimers are further extended into layers by means of the bridging sulfate groups. Each Mn atom in the complex is in bivalent state with a distorted pentagonal bipyramid configuration and has a N2O5 donor set which consists of two nitrogen atoms and five oxygen atoms provided by the ligands of two CHZ molecules, one water molecule, and two sulfate ions. The CHZ tridentate ligands are coordinated with adjacent Mn(II) cation via two terminal N atoms and the carbonyl O atom and sulfate anions act as bidentate bridge ligand. Four kinds of Mn(II) CHZ complex structures are compared. The thermal property of title complex was studied by using DSC and TG-DTG techniques. The results exhibit the title complex is highly stable.  相似文献   

6.
The nitrate and perchlorate Ni(II) complexes of the stereo-isomeric hexazamacrocyclic ligands L1 (3,6,14,17,23,24-hexaazatricyclo[17.3.1.18,12]tetracosa-1(23),8,10,12(24),19,21-hexaene,2,7,13,18-tetramethyl) and L2 (3,7,15,19,25,26-hexaazatricyclo[19.3.1.19,13]hexacosa-1(25),9,11,13(26),21,23-hexaene,2,8,14,20-tetramethyl) derived from 2,6-diacetylpyridine have been synthesized and characterized by microanalysis, LSI-MS, conductivity measurements, IR, UV–Vis spectroscopy and magnetic studies. Crystal structures of L1·2H2O as well as of the complexes [NiL1](ClO4)2[NiL1](ClO4)2 and [NiL2](NO3)2[NiL2](NO3)2 have been determined. The X-ray studies show the presence of mononuclear endomacrocyclic complexes with the metal ion coordinated to all the nitrogen donor atoms from the macrocyclic framework in a N6 core. The geometry around the metal ions can be described as distorted octahedral. The nitrate and perchlorate anions do not coordinate to the metal ions, but they are involved in intermolecular interactions through hydrogen bonds to the amine groups of the macrocyclic ligands.  相似文献   

7.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

8.
The structure of triclinic catena-tetraquo(μ-pyridine-2,3-dicarboxylato-N,O; O′)calcium(II) is composed of two symmetry independent Ca(II) ions and two independent ligand molecules. Each Ca(II) is coordinated by a N,O-bonding moiety of a ligand, four water oxygens, and a carboxylate oxygen donated by an adjacent bridging ligand. The resulting molecular ribbons are propagating in the [010] crystal direction. Both Ca(II) ions are eight coordinate forming a capped pentagonal bipyramidal with strongly distorted pentagonal equatorial planes. Hydrogen bonds between carboxylate oxygens and coordinated waters are responsible for the stability of the structure. The orthorhombic structure of catena-trisaquo[(μ-2, 3-dicarboxypyridin-1-ium-O,O′; O′′) (H pyridine-2,3-dicarboxylato-N,O)]calcium(II) is composed of molecular ribbons in which the bridging of Ca(II) ions occurs through a ligand using one bidentate carboxylate. The other carboxylate of this ligand donates only one O atom to Ca(II), the second remaining inactive. A proton is attached to the hetero-nitrogen. Each Ca(II) is also chelated by a N,O-bonding moiety of a second ligand, which does not bridge and its second carboxylate remains protonated. Three water oxygen atoms complete the coordination around the Ca(II) ion to eight. The resulting coordination polyhedron is a capped pentagonal bipyramid with a strongly distorted equatorial plane. Hydrogen bonds in which coordinated waters act as donors are responsible for the stability of the structure.  相似文献   

9.
1 INTRODUCTION Amides play an important role in the evolution ofnature. The amidate participates in the coordinationof iron with the ligands containing biomolecules, suchas antitumor drug bleomycin[1] and nitrile hydra-tase[2]. Bleomycin is a clinically useful antitumoragent which catalyzes the cleavage of oxidative DNAand oxidizes a number of organic substrates with di-oxygen or H2O2 . This has raised more interest in [3]the coordination of amide complexes[4, . …  相似文献   

10.
A series of Mn(II) macrocyclic Schiff-base complexes [MnLnCl]+ (n = 1–4) have been prepared via the Mn(II) templated [1+1] cyclocondensation of 2,6-diacetylpyridine or 2,6-pyridinedicarbaldehyde with the symmetrical 1,4-bis(3-aminopropyl)piperazine or the novel asymmetrical N,N′(2-aminoethyl)(3-aminopropyl)piperazine linear amines containing piperazine moiety. The complexes have been characterized by elemental analyses, IR, FAB-MS, magnetic studies and conductivity measurements. The crystal structure of [MnL2(CH3OH)Cl](ClO4) and [MnL4Cl](PF6) complexes have also been determined showing the metal ion in a N4OCl pentagonal bipyramidal or N4Cl highly distorted octahedral geometry, respectively.  相似文献   

11.
Chloromethylated styrene-divinyl benzene of 8% cross-link was functionalized using o-phenylene diamine and finally it was treated with Mn(II) for the formation of metal complex on the surface. The metal content was estimated using atomic absorption spectroscopy. The thermal stability of the catalyst was seen by the use of DTA-TG analyses and the catalyst was found to be stable up to ˜125°C. The modern spectroscopic methods such as FT-IR, ESR were used in order to confirm the probable structure of the catalyst. The catalytic activity of this supported Mn(II)-complex was investigated for aziridination of olefins with bromamine-T as the source of nitrogen. The catalyst was found to be effective in this reaction and could be reused with no substantial loss of activity for up to three cycles.  相似文献   

12.
Copper complexes with aminoalcoholato ligands have attracted much attention recently because of their potential applications in ceramic materials. This review deals with polynuclear copper (II) complexes containing bidentate and triden-tate aminoalcoholato ligands. The focus of this article is on the synthesis, structure, and magnetic properties of polynuclear copper (II) complexes obtained recently by our group. Some relevant work reported previously by other researchers is also included.Dedicated to Professor Jiaxi Lu on the occasion of his 80th birthday.  相似文献   

13.
Thiosemicarbazides and their metal complexes have attracted considerable interest because of their biological activities and their flexibility, which allows the ligands to bend and rotate freely to accommodate the coordination geometries of various metal centres. Discrete copper(II) and cadmium(II) complexes have been prepared by crystallization of N‐[2‐(2‐hydroxybenzoyl)hydrazinecarbonothioyl]propanamide (H3L) with Cu(CH3COO)2 or Cd(NO3)2 in a dimethylformamide/methanol mixed‐solvent system at room temperature, affording the complexes di‐μ‐acetato‐bis{μ4‐1‐[(2‐oxidophenyl)carbonyl]‐2‐(propanamidomethanethioyl)hydrazine‐1,2‐diido}tetracopper(II) dimethylformamide disolvate, [Cu4(C11H10N3O3S)2(C2H3O2)2]·2C3H7NO, (I), and bis{μ2‐[(2‐hydroxyphenyl)formamido](propanamidomethanethioyl)azanido}bis[(4,4′‐bipyridine)nitratocadmium(II)] dihydrate, [Cd2(C11H12N3O3S)2(NO3)2(C10H8N2)2]·2H2O, (II). Complex (I) consists of four CuII cations, two μ4‐bridging trianionic ligands and two μ2‐bridging acetate ligands, while complex (II) is composed of two CdII cations, two μ2‐bridging monoanionic ligands, two nitrate ligands and two 4,4′‐bipyridine ligands. These discrete complexes are connected by hydrogen bonds and van der Waals interactions to form a three‐dimensional supramolecular architecture. Compared with (I), the phenolic hydroxy group and hydrazide N atom of the thiosemicarbazide ligand of (II) are not involved in coordination and lead to a binuclear CdII complex. This different coordination mode may be attributed to the larger ionic radius of the CdII ion compared with the CuII ion.  相似文献   

14.
Five picolinato zinc(II) and cadmium(II) complexes, [Zn(ntb)(pic)]ClO4·CH3OH·2H2O (1), [Zn(bbma)(pic)]NO3·2CH3OH (2), [Cd(ntb)(pic)]ClO4·0.75CH3OH·H2O (3), [Cd2(bbma)2(pic)2](ClO4)2 (4), and [Cd2(bbp)(bbp-H)(pic)2(C2H5OH)]ClO4 (5), have been synthesized, where pic is the anion of picolinic acid, ntb is tris(2-benzimidazolylmethyl)amine, bbma is bis(benzimidazol-2-yl-methyl)amine, and bbp is 2,6-bis(benzimidazol-2-yl)pyridine. All the complexes were characterized by X-ray single-crystal diffraction, elemental analysis, IR, fluorescence spectroscopy, and thermal gravimetric analysis. 13 are mononuclear complexes in which picolinate adopts a N,O-chelating mode. 4 is a symmetrical dinuclear complex bridged by two anti-parallel picolinates in a N,O,O-coordination mode. 5 is also a dinuclear complex in which only one picolinate is a bridge. A 1-D double chain is formed by extensive H-bonds and ππ stacking in 1, while single zigzag chains are formed in 5. Complexes 24 all exhibit 63-hcb 2-D frameworks. They extend to form four-connected 66-dia 3-D topological nets for 2 and 4 and five-connected 46·64-bnn 3-D topological nets for 3. The five complexes show emission maxima in the blue region in the solid state.  相似文献   

15.
Diamagnetic ruthenium(II) complexes of the type [Ru(L)(CO)(B)(EPh3)] [where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip and L = dibasic tridentate ligands dehydroacetic acid semicarbazone (abbreviated as dhasc) or dehydroacetic acid phenyl thiosemicarbazone (abbreviated as dhaptsc)] were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip) with different tridentate chelating ligands derived from dehydroacetic acid with semicarbazide or phenylthiosemicarbazide. All the complexes have been characterized by elemental analysis, FT-IR, UV–Vis and 1H NMR spectral methods. The coordination mode of the ligands and the geometry of the complexes were confirmed by single crystal X-ray crystallography of one of the complexes [Ru(dhaptsc)(CO)(PPh3)2] (5). All the complexes are redox active and are monitored by cyclic voltammetric technique. Further, the catalytic efficiency of one of the ruthenium complexes (5) was determined in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide.  相似文献   

16.
A group of a diverse family of dinuclear copper(II) complexes derived from pyrazole‐containing tridentate N2O ligands, 1,3‐bis(3,5‐dimethylpyrazol‐1‐yl)propan‐2‐ol (Hdmpzpo), 1,3‐bis(3‐phenyl‐5‐methyl pyrazol‐1‐yl)propan‐2‐ol (Hpmpzpo) and 1,3‐bis(3‐cumyl‐5‐methylpyrazol‐1‐yl)propan‐2‐ol (Hcmpzpo), were synthesized and characterized by elemental analysis, IR spectroscopy and three of them also by single‐crystal X‐ray diffraction. Three complexes, [Cu2(pmpzpo)2](NO3)2·2CH3OH ( 3 ·2CH3OH), [Cu2(pmpzpo)2](ClO4)2 ( 4 ) and [Cu2(cmpzpo)2](ClO4)2·2DMF ( 7 ·2DMF), each exhibits a dimeric structure with a inversion center being located between the two copper atoms. The metal ion is coordinated in a distorted square planar environment by two pyrazole nitrogen atoms and two bridging alkoxo oxygen atoms. Both complexes 1 ·CH3OH·H2O and 3 ·2CH3OH were investigated in anaerobic conditions for the catalytic oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ), for modeling the functional properties of catechol oxidase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Pentagonal-bipyramidal isothiocyanato Co(II) and Ni(II) complexes with condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized and characterized by elemental analyses, IR and UV–vis spectra, molar conductivity, and magnetic susceptibility. Crystal structures of the Co(II) and Ni(II) complexes were also determined. Antimicrobial activities of the ligand and metal complexes were examined.  相似文献   

18.
A new heterogeneous Schiff base copper(II) complex was prepared by reacting amino‐polystyrene with salicylaldehyde followed by complexation with cupric chloride. The structure of this immobilized complex has been established on the basis of scanning electron microscope (SEM), thermogravimetric analysis (TGA), elemental analysis employing atomic absorption spectroscopy (AAS), and spectrometric methods like diffuse reflectance spectra of solid (DRS) and fourier transform infrared spectroscopy (FTIR). Catalytic activity of this polymer anchored Cu(II) complex was tested by studying the oxidation of cyclohexene, styrene, and benzyl alcohol in the presence of tert‐ butylhydroperoxide as oxidant. Several parameters such as solvent, oxidant, reaction time, reaction temperature, amount of catalyst, and substrates oxidant ratio were varied to optimize the reaction condition. Under optimized reaction conditions, cyclohexene gave a maximum of 74% conversion with three major products 2‐cyclohexene‐1‐one, cyclohexene epoxide, and 2‐cyclohexene‐1‐ol. The conversions of styrene and benzylalcohol proceed with 53% and 77%, respectively. Styrene gives styrene epoxide as the major product while benzylalcohol gives benzaldehyde as the major product. The catalytic results reveal that polymer anchored copper(II) Schiff base complex can be recycled more than five times without much loss in the catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A tetradentate N-donor ligand 1,4-bis[2-(2-pyridyl)benzimidazolato]butane (L) was prepared for construction of a coordination framework. Three one-dimensional coordination polymers {[M(II)L(NCS)2](DMF)2} n (M(II) = cadmium(II), 1, zinc(II), 2, manganese(II), 3) were obtained by reaction of metal ions and L in the presence of KSCN in DMF/water. The complexes are isostructural and consist of 1D zigzag [M(II)L(NCS)2] n chains and DMF molecules. Within the chains, the metal atoms are each octahedrally coordinated by four N atoms of L and two N atoms of the SCN? anions. Complexes 1 and 2 in the solid state at room temperature exhibit intense photoluminescence at 453 and 433 nm, respectively.  相似文献   

20.
Three ruthenium(II) hydrazone complexes of composition [RuCl(CO)(PPh3)2L] were synthesized from the reactions of [RuHCl(CO)(PPh3)3] with hydrazones derived from 4‐methoxybenzhydrazide and 4‐formylbenzoic acid (HL1), 4‐methylbenzaldehyde (HL2) and 2‐bromobenzaldehyde (HL3). The synthesized hydrazone ligands and their metal complexes were characterized using elemental analysis and infrared, UV–visible, NMR (1H, 13C and 31P) and mass spectral techniques. The hydrazone ligands act as bidentate ones, with O and N as the donor sites, and are predominantly found in the enol form in all the complexes studied. The molecular structures of the ligands HL1, HL2 and HL3 were determined using single‐crystal X‐ray diffraction. The interactions of the ligands and the complexes with calf thymus DNA were studied using absorption spectroscopy and cyclic voltammetry which revealed that the compounds could interact with calf thymus DNA through intercalation. The DNA cleavage activity of the complexes was evaluated using a gel electrophoresis assay which revealed that the complexes act as good DNA cleavage agents. In addition, all the complexes were subjected to antioxidant assay, which showed that they all possess significant scavenging activity against 2,2‐diphenyl‐2‐picrylhydrazyl, OH and NO radicals. The in vitro cytotoxic effect of the complexes examined on cancerous cell lines (HeLa and MCF‐7) showed that the complexes exhibit substantial anticancer activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号