首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new diamine monomer containing rigid planar fluorenone moiety, 2,7‐bis(4‐aminophenyl)‐9H‐fluoren‐9‐one, was synthesized through Suzuki coupling reaction. Then it was reacted with pyromellitic dianhydride to obtain a polyimide (FOPPI) via a conventional two‐step polymerization process. The prepared FOPPI exhibits excellent barrier properties, with the oxygen transmission rate and water vapor transmission rate low to 3.2 cm3·m?2·day?1 and 2.9 g·m?2·day?1, respectively. The results of wide angle X‐ray diffractograms, positron annihilation lifetime spectroscopy, and molecular dynamics simulations reveal that the excellent barrier properties of FOPPI are mainly ascribed to the crystallinity, high chain rigidity, and low free volume, which are resulted from the rigid planar moiety. FOPPI also shows outstanding thermal stability and mechanical properties with a glass transition temperature up to 420 °C, 5% loss temperature of 607 °C, coefficient of thermal expansion of 1.28 ppm K?1, and tensile strength of 150.8 MPa. The polyimide has an attractive potential application prospect in the flexible electronics encapsulation area. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2373–2382  相似文献   

2.
A high-performance polyimide was prepared by the dipolymerization of 4,4'-diaminobenzanilide (DABA) and pyromellitic dianhydride (PMDA). Due to the introduction of rigid planar moieties and amide groups, the polyimide shows outstanding properties, such as high glass transition temperatures (435 °C), excellent thermal stability (Td5%, 542 °C, coefficient of thermal expansion, −3.2 ppm K−1), and superior mechanical properties. Most importantly, the polyimide exhibits excellent barrier properties, with oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) low to 7.9 cm3 (m2 day)−1 and 5.1 g (m2 day)−1, respectively. Wide angle X-ray diffractograms (WAXD), positron annihilation lifetime spectroscopy (PALS) and molecular dynamics simulations reveal that the excellent barrier properties are mainly attributed to the high crystallinity, high extent of in-plane crystalline orientation, and low free volume, which are resulted from the rigid planar structure and strong interchain hydrogen bonding. The high-barrier and thermally stable polyimide has an attractive potential application prospect in the fields of micro-electronics encapsulation and high grade packaging industry.  相似文献   

3.
An intrinsic high-barrier polyimide (2,7-CPAPPI) containing rigid planar carbazole moiety and amide group in main chain was prepared. The 2,7-CPAPPI shows very attractive barrier performances, possessing water vapor transmission rate (WVTR) and oxygen transmission rate (OTR) low to 0.04 g m−2 day−1 and 0.11 cm3 m−2 day−1, respectively. Meanwhile, 2,7-CPAPPI also displays exceptional thermal stability with a glass transition temperature (Tg) of 552°C and coefficient of thermal expansion (CTE) of 15.48 ppm/K. The barrier performances of 2,7-CPAPPI are compared with those of a structural analog (2,7-CPPI, containing only carbazole moiety in the main chain) and a typical polyimide (Kapton). The structure–barrier performances relationship was investigated by molecular simulations, wide angle X-ray diffraction (WAXD), and positron annihilation lifetime spectroscopy (PALS). The results show that 2,7-CPAPPI has more number of intermolecular hydrogen bonds among the three PIs, which leads to close chain packing and thereby high crystallinity, low free volume, and poor chains mobility. That is, the high crystallinity and low free volume of 2,7-CPAPPI decrease the diffusion and solubility of gases. Meanwhile, the poor chains mobility further reduces the gases diffusion. The decreased diffusion and solubility of gases consequently promote the improvement of barrier properties for 2,7-CPAPPI.  相似文献   

4.
5.
An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m?3 day?1), which were varied according to the influent concentration (3,600 and 5,400 mg COD L?1) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24–25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m?3 day?1, the highest daily production rate (0.139 mol H2?day?1) was achieved at AVOL of 18.0 kg COD m?3 day?1, and the highest production yields per removed and applied load were 2.83 and 3.04 mol H2?kg SUC?1, respectively, at AVOL of 13.5 kg COD m?3 day?1. The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the “biochemical generation” of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves “biochemical consumption” of the substrate.  相似文献   

6.
Lutein has an increasing share in the pharmaceutical and nutraceutical market due to its benefits to eye health. Microalgae may be a potential source for lutein production while the expense limits the commercialization. In this study, a coiled tubular tree photobioreactor (CTPBR) design was investigated for cultivating the cold tolerant microalgae Chlorella vulgaris UTEX 265 under various conditions for lutein production. The influence and interaction of light irradiance strength, lighting cycle, and temperature on microalgae and lutein production efficiency at low temperature range were also studied in flasks via response surface method (RSM). The results demonstrated that 14 h day-light, 120 μmol photons m?2 s?1, and 10 °C was the optimal condition for algae growth and lutein production at low temperature experimental ranges. C. vulgaris UTEX 265 showed good potential to produce lutein in cold weather, and the optimum lutein production was contrary to the specific lutein content but corresponds to the trend of optimum growth. Additionally, fast growth (μ = 1.50 day?1) and good lutein recovery (11.98 mg g?1 day?1) in CTPBR were also achieved at the low irradiance stress condition and the low temperature photo-inhibition conditions.  相似文献   

7.
An anaerobic sequencing batch reactor containing immobilized biomass (AnSBBR) was used to produce biomethane by treating the effluent from another AnSBBR used to produce biohydrogen from glucose- (AR-EPHG) and sucrose-based (AR-EPHS) wastewater. In addition, biomethane was also produced from sucrose-based synthetic wastewater (AR-S) in a single AnSBBR to compare the performance of biomethane production in two steps (acidogenic and methanogenic) in relation to a one-step operation. The system was operated at 30 °C and at a fixed stirring rate of 300 rpm. For AR-EPHS treatment, concentrations were 1,000, 2,000, 3,000, and 4,000 mg chemical oxygen demand?(COD)?L?1 and cycle lengths were 6 and 8 h. The applied volumetric organic loads were 2.15, 4.74, 5.44, and 8.22 g COD L?1 day?1. For AR-EPHG treatment, concentration of 4,000 mg COD L?1 and 4-h cycle length (7.21 g COD L?1 day?1) were used. For AR-S treatment, concentration was 4,000 mg COD L?1 day?1 and cycle lengths were 8 (7.04 g COD L?1 day?1) and 12 h (4.76 g COD L?1 day?1). The condition of 8.22 g COD L?1 day?1 (AR-EPHS) showed the best performance with respect to the following parameters: applied volumetric organic load of 7.56 g COD L?1 day?1, yield between produced methane and removed organic material of 0.016 mol CH4?g COD?1, CH4 content in the produced biogas of 85 %, and molar methane productivity of 127.9 mol CH4?m?3 day?1. In addition, a kinetic study of the process confirmed the trend that, depending on the biodegradability characteristics of the wastewaters used, the two-step treatment (acidogenic for biohydrogen production and methanogenic for biomethane production) has potential advantages over the single-step process.  相似文献   

8.
In this study, a series of binary mixtures of N-butyl stearate (nBS) and methyl palmitate (MP) were used to produce a novel composite phase change material (CPCM) for potential application in the eastern China, and their thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC indicated that the mixture consisting of 10 mass% nBS and 90 mass% MP is optimum as the CPCM in terms of the phase change temperature ranges (T f = 19.74–5.59 °C; T m = 18.34–33.80 °C) and latent heats (ΔH f = 176.8 J g?1; ΔH m = 189.3 J g?1). On the other hand, the thermal reliability and chemical stability of the CPCM after 120, 180, 240, 300, 360 and 500 accelerated thermal cycling tests were studied by DSC and fourier transform infrared (FTIR) analysis. The results demonstrated that the CPCM had good thermal reliability and chemical stability.  相似文献   

9.
Phosphoric acid‐doped crosslinked proton‐conducting membranes with high anhydrous proton conductivity, and good chemical stability in phosphoric acid were synthesized and characterized. The synthetic procedure of the acid‐doped composite membranes mainly involves the in situ crosslinking of polymerizable monomer oils (styrene and acrylonitrile) and vinylimidazole, and followed by the sulfonation of pendant imidazole groups with butanesultone, and further doped with phosphoric acid. The resultant phosphoric acid‐doped composite electrolyte membranes are flexible and show high thermal stability and high‐proton conductivity up to the order of 10?2 S cm?1 at 160 °C under anhydrous conditions. The phosphoric acid uptake, swelling degree, and proton conductivity of the composite membranes increase with the vinylimidazole content. The resultant composite membranes also show good oxidative stability in Fenton's reagent (at 70 °C), and quite good chemical stability in phosphoric acid (at 160 °C). The properties of the prepared electrolyte membranes indicate their promising prospects in anhydrous proton‐exchange membrane applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 1311–1317  相似文献   

10.
This work aimed to characterize two native microalgal strains newly isolated from South Mediterranean areas and identified as Chlorella sorokiniana ES3 and Neochloris sp. AM2. The growth properties and biochemical composition of these microalgae were evaluated in different culture media (Algal, BG-11, f/2, and Conway). Among the tested media, nitrate- and phosphate-rich Algal medium provided the maximum biomass productivities (85.5 and 111.5 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively), while the nitrate- and phosphate-deficient f/2 medium resulted in the highest lipid productivities (24.1 and 35.8 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively). The physiological state of both microalgae was investigated under different light and temperature levels using the pulse amplitude-modulated fluorometry. The better photosynthetic efficiency of C. sorokiniana was obtained at 23 °C with a light saturation of 156 μE m?2 s?1, while that of Neochloris sp. was achieved at 15 °C with a light saturation of 151 μE m?2 s?1. The analysis of fatty acid profile and biodiesel parameters revealed that C. sorokiniana, cultivated in Algal and f/2 media, can be considered as a suitable candidate for high-quality biodiesel production.  相似文献   

11.
In this paper, we systematically address the performance of cellulose nanocrystals (CNs) coated flexible food packaging films. Firstly, the morphology of CNs from cotton linters and homogeneity of its coating on different substrates were characterized by transmission electronic microscopy and atomic force microscopy. Then, the 1.5 μm thick CNs coating on polyethylene terephthalate (PET), oriented polypropylene, oriented polyamide (OPA), and cellophane films were characterized for their mechanical, optical, anti-fog, and barrier properties. CNs coating reduces the coefficient of friction while maintaining high transparency (~90 %) and low haze (3–4 %) values, and shows excellent anti-fog properties and remarkable oxygen barrier (oxygen permeability coefficient of CNs coating, P’O2, 0.003 cm3 μm m?2 24 h?1 kPa?1). In addition, the Gelbo flex test combined with oxygen permeance (PO2) measurements and optical microscopy are firstly reported for evaluating the durability of coatings, revealing that the CNs coated PET and OPA provide the best performance among the investigated coated films. CNs are therefore considered to be a promising multi-functional coating for flexible food packaging.  相似文献   

12.
The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m?3day?1 with averages of 0.289 m3 CH4 kg COD r?1for the UASB reactor and 4.4 kg COD m?3day?1 with 0.207 m3 CH4 kg COD r?1 for APBR. The OLR played a major role in the emission of H2S conducting to relatively stable quality of biogas emitted from the APBR, with H2S concentrations <10 mg L?1. The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH4 and a lower H2S content in biogas.  相似文献   

13.
LPSF/GQ-130 is a drug candidate, according to reports about its significant anti-inflammatory activity and non-toxicity demonstrated in an acute preclinical study. Despite this, knowledge of its physical–chemical properties is insufficient for the development of medicines. Thus, this work aimed to characterize the raw material at its molecular, particle, and agglomerate level as well as evaluate its thermal compatibility to pharmaceutical excipients. Through spectrometric techniques the molecular structure of the substance was confirmed. For thermal analysis its melting (171.3–176.5 °C) and degradation (238.3–297.4 °C) ranges, besides its purity (99.37 %), were determined. The kinetic non-isothermal degradation supplied the order of thermal reaction (0), the activation energy (96.14 kJ mol?1) and the frequency factor (3.130 × 10?7 min?1). The diffraction of X-rays presented well defined signs in the angles 5.5°, 16.3°, and 44.18° 2θ, suggesting crystalline structure. Scanning electronic microscopy exhibited needle morphology. LPSF/GQ-130 presented Type-III isotherm adsorption/desorption, with a superficial area of 81.3529 m2 g?1 and water content calculated at 1 % using the Karl Fisher method. Laser granulometry calculated its granulometry between 11.65 and 13.10 μm, thus it was characterized as a very fine powder. The prototype was classified as insoluble in water (<0.0187 μg mL?1) and soluble in acetone and acetonitrile, and exhibits instability in basic pH (100 %) and oxidative conditions (30–70 %). In thermal compatibility the excipients PVP K-30, Compritol® 888 ATO, and MYRJ® 59 seem to exercise a protective thermal activity for the prototype.  相似文献   

14.
The thermal-mechanical properties of unsaturated polyester (UP) composite were enhanced by the dispersion of silica aerogel (SA) with preserved pores. Low-cost SA was prepared from rice husk via the sol-gel process and ambient pressure drying. A new method was proposed to encapsulate the hydrophobic aerogel surface pores with hydrophilic polyvinyl alcohol (PVA) film using the fluidized-bed coating process. The dispersion of PVA-coated aerogel with preserved pores in the polyester matrix resulted in an increase of specific compressive strength (44.1?MPa?·?cm3?g?1), thermal insulation (0.23?W?m?1?K?1), and thermal stability (Tonset?=?310°C), but decreased the glass transition temperature (Tg?=?260°C).  相似文献   

15.
A positive-working photosensitive polyimide precursor based on fluorinated poly(amic acid) (FPAA) and 2,3,4-tris(1-oxo-2-diazonaphthoquinon-4-ylsulfonyloxy)benzophenone (D4SB) as a photosensitive compound has been developed. FPAA was prepared by ring-opening polyaddition of dianhydrides, pyromellitic dianhydride and biphenyltetracarboxylic dianhydride, with diamine, 2,2′-bis(trifluoromethyl)benzidine, in methanol. The FPAA film showed excellent transparency to UV light and good solubility in a wide range of organic solvents. The dissolution behavior of FPAA containing 30 wt % D4SB after exposure was studied, and it was found that the difference of dissolution rate between exposed and unexposed parts was enough to get high contrast due to the photochemical reaction of D4SB in the polymer film. The photosensitive fluorinated polyimide (FPI) precursor containing 30 wt % D4SB showed a sensitivity of 80 mJ cm−2 and a contrast of 7.8 with 365 nm light when it was developed with 0.3% aqueous tetramethyl ammonium hydroxide solution at room temperature. The FPI film cured up to 360°C had a low coefficient of thermal expansion of 10.3 ppm °C−1 and a low dielectric constant of 3.04. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2261–2267, 1998  相似文献   

16.
ABSTRACT

Three wholly, semi aromatic and aliphatic-aromatic polyimides containing bis(phenoxy) naphthalene, bis[(phenoxy) phenyl] propane and bis(phenoxy-methyl) cyclohexane segments by the two-step procedure from 2, 7-bis(4-aminophenoxy) naphthalene (BAPON), 2, 2-bis[4-(4-aminophenoxy)phenyl]propane (BAPOP), 1, 4-bis (4-aminophenoxy methyl) cyclohexane (BAPMC) as a diamine and 4,4′-carbonyldiphthalic anhydride (CDPA) were prepared. The first step of this procedure including ring-opening polyaddition in a polar solvent to give poly(amic-acid)s, second step containing cyclodehydration reaction to form polyimides. Synthesized monomer and polyimides were characterized by FT-IR, 1H NMR spectroscopy and elemental analyses (CHN) that obtained results gave the most powerful evidence. The polyimide synthesized from BAPON was characterized as semi-crystalline, whereas the other polyimides showed amorphous patterns by the x-ray diffraction studies. The inherent viscosity was ranging between 0.87–1.01 dL/g. Tensile strength, initial moduli, and elongation at break of the polyimide films ranged from 88–117 MPa, 1.98–2.32 GPa, and 5–8%, respectively. Thermogravimetric analysis in nitrogen atmosphere shows that these polymers having good stability, so 10% weight will be lost in the range of 500–630°C. The point of polyimide with BAPMC segment, is “adding of good thermal stability and processability” lower moisture absorption and dielectric constant (0.75% and 2.90).  相似文献   

17.
In this paper, activated carbon materials were synthesized from pomegranate rind through carbonization and alkaline activation processes. The effects of pyrolytic temperature on the textual properties and electrochemical performance were investigated. The surface area of the activated carbon can reach at least 2200 m2 g?1 at different pyrolytic temperatures. It was found that, at the range of 600–900 °C, decreasing the carbonization temperature leads to the increase of t-plot micropore area, t-plot micropore volume, and capacitance. Further decreasing the carbonization temperature to 500 °C also leads to the increase of t-plot micropore area and t-plot micropore volume, but the capacitance is slightly poorer. The activated carbon carbonized at 600 °C and activated at 800 °C possesses very high specific area (2931 m2 g?1) and exhibits very high capacitance (~268 F g?1 at 0.1 A g?1 and ~242 F g?1 at 1 A g?1). There is no capacitance fading after 2000th cycle.  相似文献   

18.
We carried out time-series observations of 210Po and 210Pb radioactivity in the western North Pacific Ocean. The sinking fluxes of particulate organic carbon (POC) in the mesopelagic zone were estimated from 210Po radioactivity during several seasons in the subarctic and subtropical regions of the western North Pacific. The seasonal changes of POC fluxes at a depth of 400 m were larger in the subarctic region than in the subtropical region. The annual mean POC flux at a depth of 400 m was larger in the subarctic region (57 mgC m?2 day?1) than in the subtropical region (36 mgC m?2 day?1). The annual mean of the e-ratio (the ratio of POC flux to primary productivity) in the subarctic region (18 %) was about twice the e-ratio in the subtropical region (10 %). These results imply that the efficiency of the biological pump is larger in the subarctic region than in the subtropical region of the western North Pacific.  相似文献   

19.
A kind of aromatic diamine, 4′, 4″-(2, 2-diphenylethene-1, 1-diyl)dibiphenyl-4-amine (TPEDA), was successfully synthesized via Suzuki coupling reaction. The TPEDA containing nonplanar rigid moieties can be used as epoxy resins curing agent to improve the complex properties of cured composites. The curing kinetics during thermal processing of E51/TPEDA system was investigated by nonisothermal differential scanning calorimeter. The average activation energy (E α), pre-exponential factor (lnA), and reaction order (n) calculated from the Kissinger, the Ozawa, the Friedman and the Flynn–Wall–Ozawa methods were 55.8 kJ mol?1, 9.4 s?1 and 1.1, respectively. By the aid of estimated kinetic parameters, the predicted heat generation vs temperature curves fit well with the experimental data, which supported the validity of the estimated parameters and the applicability of the analysis method used in this work. By the introduction of nonplanar rigid moieties, the cured epoxy resins with TPEDA exhibited a higher glass transition temperature (T g = 258 °C), good thermal stability (≈395 °C at 10 % mass-loss), and high char yield (36.6 % at 700 °C under nitrogen) compared with conventional curing agents.  相似文献   

20.
This work reports the synthesis and characterization of diamantane‐based polyimides obtained from 4,9‐bis[4(3,4‐dicarboxyphenoxy)phenyl]diamantane dianhydride and various aromatic diamines. Interestingly, the diamantane‐based polyimides were very stable to hydrolysis. This novel polyimide exhibits a low dielectric constant (2.65–2.77), low moisture absorption (<0.67%), good solubility, high Tg and unusually high thermal stability. Dynamic mechanical analysis (DMA) reveals that the diamantane‐based polyimides have high Tg ranging from 281 to 379 °C. The high‐temperature β1 subglass transition around 285 °C was observed in polyimide 6a derived from 2,2′‐bis(trifluoromethyl)benzidine. This class of novel diamantane‐based polyimide is very promising for electronic applications, because of its good mechanical properties, good thermal stability, low dielectric constant, excellent hydrolytic resistance, and low moisture absorption. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1673–1684, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号