首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Reaction of potassium tetrachloroaurate(III), KAuCl4, with 2-pyridinecarboxaldehyde (2CHO-py) have been examined in protic HX (X=OH, OMe, OEt, OCH2CH2CH2, OCH2CH2CH2CH3, OCH2CF3) solvents. Compounds in which the pyridine ligand is N or N-O coordinated in a newly carbonyl hydrated or in semi- and acetal-forms, derived by addition of one or two hydroxylic molecules, have been isolated; these include dichloro[pyridine-2(α-hydroxymethanolato)]gold(III) (1), dichloro[pyridine-2(α-ethoxymethanolato)] gold(III) (2), dichloro[pyridine-2[α-(2,2,2-trifluoroethoxymethanolato)]gold(III) (3), trichloro(2-pyridinecarboxaldehyde dimethyl acetal)gold(III) (4), trichloro(2-pyridinecarboxaldehyde diethyl acetal)gold(III) (5), trichloro(2-pyridinecarboxaldehyde di-1-propyl acetal)gold(III) (6) and trichloro(2-pyridinecarboxaldehyde di-1-butyl acetal)gold(III) (7). The crystal and molecular structures of (2), (5) and (7) have been determined by X-ray methods. Compound (2) crystallizes in space group Pna21 with Z=4, a=7.8914(4), b=17.3660(4) and c=8.3873(5)Å; (5) crystallizes in space group P&1macr; with Z=2, a=7.7779(3), b=8.2878(2) and c=13.3202(6)Å, α=96.975(2), β=95.096(2), γ=115.027(2)°; (7) crystallizes in space group P21/a with Z=4, a=14.5438(12), b=8.9865(7) and c=15.0362(11)Å.  相似文献   

2.

The reaction of CuX2(X=Cl, Br) with 2-aminopyrimidine in aqueous solution, or 2-amino-5-bromopyrimidine in aqueous acid yields compounds of the forms [LCuCl2] n (1), [L2CuCl2] (2) and [L'2CuBr2] (3) [L=2-aminopyrimidine; L'=2-amino-5-bromo-pyrimidine]. The three compounds all form layered structures in which each copper ion is coordinated to two 2-aminopyrimidine molecules and two halide ions. Common structural threads involve bridging ligation [either by monomeric (1) or hydrogen bonded ligand dimers (2 and 3)], N-H···X and N-H···N hydrogen bonding and π-π stacking interactions as well as semi-coordinate Cu···X bond formation (1 and 2) or Br···Br interactions (3). Compounds 1 and 2 crystallize as two-dimensional coordination polymers with asymmetrically bihalide bridged (CuX2) n chains cross-linked into sheets by the 2-aminopyrimidine molecules (1) or by hydrogen bonded L2 dimers (2). The halide bibridged chains expand their primary copper coordination spheres to give 4 + 2 coordination spheres in 1 and 2. In 3, the layer structure involves coordination of the hydrogen bonded L'2 dimers and C-Br···Br- interactions. Crystal data: (1): monoclinic, P21/m, a=3.929(1), b=12.373(2), c=7.050(1)å, β=91.206(4)°, V=342.7(1)&Aringsup3;, Z=2, D calc= 2.225Mg/m3, μ=3.878 mm-1, R=0.0269 for [|I|≥3σ(I)]. For (2): triclinic, P-1, a=4.095(4), b=7.309(5), c=10.123(6) å, α=86.28(6), β=78.44(6), γ=74.55(8)°, V=286.1(4) Å3, Z=1, D calc=1.884 Mg/m3, μ=2.360 mm-1, R=0.0506 for [|I|≥2σ(I)]. For (3): triclinic, P-1, a=6.074(4), b=7.673(3), c=8.887(3) å, α=108.43(3) β=100.86(5), γ=106.96(4)°, V=357.0(3) Å3, Z=1, D calc=2.657 Mg/m3, μ=12.714mm-1, R=0.0409 for [|I|≥2σ(I)].  相似文献   

3.
Summary 2-(2-Nitrophenyl)-ethanol (2) was methylated with dimethyl sulfate to give 2-(2-methoxyethyl)-1-nitrobenzene (3a) which then was reduced with hydrazine hydrate in the presence ofRaney nickel to 2-(2-methoxyethyl)-aniline (1a). Compound1a can be transformed into the N-monosilylated derivative4 by lithiation withn-butyllithium and subsequent reaction with chlorotrimethylsilane. Reaction of2 withp-toluenesulfonyl chloride yields 2-(2-nitrophenyl)-ethylp-toluenesulfonate (5), which reacts with sodium thiomethoxide to give 2-(2-nitrophenyl)-ethylp-toluenesulfonate (5), which reacts with sodium thiomethoxide to give 2-(2-thiomethoxyethyl)-1-nitrobenzene (3b).3b was reduced with hydrazine hydrate in the presence ofRaney nickel to yield 2-(2-thiomethoxyethyl)-aniline (1b). Ethyl (2-nitrophenyl)-acetate (6) could be dimethylated with methyl iodide in the presence of potassiumtert-butoxide and 18-crown-6 to give ethyl 2-methyl-2-(2-nitrophenyl)-propionate (7). Reduction of7 with lithium borohydride yields 2,3-dihydro-3,3-dimethyl-1H-indole (9) and 2-[(1-hydroxy-2-methyl)-2-propyl]-aniline (10).
Synthese von 2-(2-Methoxyethyl)- und 2-(2-Thiomethoxyethyl)-anilin und verwandten Verbindungen
Zusammenfassung 2-(2-Nitrophenyl)-ethanol (2) wurde mit Dimethylsulfat zu 2-(2-Methoxyethyl)-1-nitrobenzol (3a) methyliert, das sich mit Hydrazinhydrat in Gegenwart vonRaney-Nickel zu 2-(2-Methoxyethyl)-anilin (1a) reduzieren läßt. Verbindung1a kann durch Metallierung mitn-Butyllithium und anschließende Reaktion mit Chlortrimethylsilan in dasN-monosilylierte Derivat4 umgewandelt werden. Reaktion von2 mitp-Toluolsulfonylchlorid ergab 2-(2-Nitrophenyl)-ethyl-p-Toluolsulfonat (5), das mit Natriumthiomethanolat zu 1-Nitro-2-(2-thiomethoxyethyl)-benzol (3b) reagiert.3b wurde mit Hydrazinhydrat in Gegenwart vonRaney-Nickel zu 2-(2-Thiomethoxyethyl)-anilin (1b) reduziert. Ethyl-2-(nitrophenyl)-acetat (6) kann mit Methyliodid in Gegenwart von Kalium-tert-butoxid und 18-Krone-6 zu Ethyl-2-methyl-2-(2-nitrophenyl)-propionat (7) dimethyliert werden. Reduktion von7 mit Lithiumborhydrid lieferte 2,3-Dihydro-3,3-dimethyl-1H-indol (9) und 2-[(1-Hydroxy-2-methyl)-2-propyl]-anilin (10).
  相似文献   

4.
设计合成了4个新的钴、镍多齿吡啶-胺配合物,[M(L1)](BF4)2(L1=N,N,N',N'-四(2-吡啶甲基)-1,2-乙二胺;C1,M=Co;C2,M=Ni)和 [M(L2)](BF4)n(L2=N,N,N',N'-四(2-吡啶甲基)-1,3-丙二胺;C3,M=Co,n=3;C4,M=Ni,n=2)。利用红外光谱、元素分析和X-射线单晶衍射方法对这些配合物的组成及结构进行了分析和表征。这4个配合物的单晶结构均属于单斜晶系,空间群有所不同(C1Cc空间群,C2P21/n空间群,C3C2/c空间群,C4P21/c空间群),并且4个配合物具有不同的三维堆积结构。  相似文献   

5.
Summary 4-Dimethylamino-5,6-dihydro-2H-thiopyran-2-thiones (1) were alkylated to N,N-dimethyl-6-methylthio-2H-thiopyran-4(3H)-iminiumiodides (2). Aminolysis of the latter with ammonia led to 6-dimethylamino-2H-thiopyran-4(3H)-iminiumiodides (3) which were hydrolyzed to 3-amino-N,N-dimethyl-2,4-pentadienthioamides (4). Ring closure with sulfur gave 3-aminothiophene-2-thioamides (5). The configurations of the pentadienthioamides (4) have been investigated by NOE experiments. The structures of the thiophene-2-thioamides (5) were established by means of two-dimensional NMR techniques.
Synthese von 3-Aminothiophen-2-thiocarboxamiden
Zusammenfassung 4-Dimethylamino-5,6-dihydro-2H-thiopyran-2-thione (1) wurden zu N,N-Dimethyl-6-methylthio-2H-thiopyran-4(3H)-iminiumiodiden(2) alkyliert. Die Umsetzung mit Ammoniak führte zur Bildung von 6-Dimethylamino-2H-thiopyran-4(3H)-iminiumiodiden (3). Diese wurden zu 3-Amino-N,N-dimethyl-2,4-pentadienthioamiden (4) hydrolysiert. Beim Erhitzen mit Schwefel erfolgte Cyclisierung zu 3-Aminothiophen-2-thiocarboxamiden (5). Die Konfiguration der Pentadienthioamide (4) wurde mit NOE-Messungen untersucht, die der Thiophen-2-thiocarboxamide (5) mit Hilfe zweidimensionaler NMR-Methoden aufgeklärt.
  相似文献   

6.
In addition to the well known affinin [=spilanthol, (2E,6Z,8E)-deca-2,6,8-trienoic acid isobutylamide (1)], the corresponding 2-methyl-butylamide (2), and two new acetylenic alkamides were isolated fromSpilanthes oleracea L. by reversed phase medium pressure chromatography: (Z)-non-2-en-6,8-diynoic acid isobutylamide (3) and (Z)-dec-2-en-6,8-diynoic acid isobutylamide (4). The structures and their stereochemistries were elucidated by1H-NMR,13C-NMR (2 and3), MS, UV, IR, and CD (2). The chemotaxonomic significance of the distribution of alkamides within theCompositae tribeHeliantheae is briefly discussed.
Neue Amide ausSpilanthes oleracea (Kurze Mitteilung)
Zusammenfassung AusSpilanthes oleracea wurden neben dem seit langem bekannten Affinin [=Spilanthol, (2E,6Z,8E)-Deca-2,6,8-triensäureisobutylamid (1)] durch Umkehrphasen-Mitteldruckchromatographie das entsprechende 2-Methylbutylamid (2) und zwei neue acetylenische Alkamide isoliert: (Z)-Non-2-en-6,8-diinsäure-isobutylamid (3) und (Z)-Dec-2-en-6,8-diinsäure-isobutylamid (4). Die Strukturen und deren Stereochemie wurden mittels1H-NMR,13C-NMR (2 und3), MS, UV, IR und CD (2) aufgeklärt. Die chemotaxonomische Bedeutung der Verbreitung von Alkamiden innerhalb der Compositen-TribusHeliantheae wird kurz diskutiert.
  相似文献   

7.
李悦生 《高分子科学》2011,29(5):627-633
Mono salicylaldiminato vanadium(Ⅲ) complexes(1a-1f)[RN = CH(ArO)]VCl2(THF)2(Ar = C6H4(1a-1e),R = Ph,1a;R = p-CF3Ph,1b;R = 2,6-Me2Ph,1c;R = 2,6-iPr2Ph,1d;R = cyclohexyl,1e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph, 1f) and bis(salicylaldiminato) vanadium(Ⅲ) complexes(2a-2f)[RN = CH(ArO)]2VCl(THF)x(Ar = C6H4(2a-2e),x = 1 (2a-2e),R = Ph,2a;R =p-CF3Ph,2b;R = 2,6-Me2Ph,2c;R = 2,6-iPr2Ph,2d;R = cyclohexyl,2e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph,x = 0,2f) have been evaluated as the active catalysts for ethylene/1-hexene copolymerization in the presence of Et2AlCl.The ligand substitution pattern and the catalyst structure model significantly influenced the polymerization behaviors such as the catalytic activity,the molecular weight and molecular weight distribution of the copolymers etc.The highest catalytic activity of 8.82 kg PE/(mmolV·h) was observed for vanadium catalyst 2d with two 2,6-diisopropylphenyl substituted salicylaldiminato ligands.The copolymer with the highest molecular weight was obtained by using mono salicylaldiminato vanadium catalyst 1f having ligands with tert-butyl at the ortho and para of the aryloxy moiety.  相似文献   

8.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

9.
Abstract

Stereocontrolled synthesis of sialyl Lex epitope and its ceramide derivative with regard to the introduction of galactose or β-D-galactosyl ceramide into the terminal N-acetylglucosamine residue of sialyl Lex determinant is described. Königs-Knorr condensation of 2-(trimethylsilyl)ethyl 2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (4) with 3, 4, 6-tri-O-acetyl-2-deoxy-2-phthalimido-D-glucopyranosyl bromide (5) gave the desired β-glycoside 6, which was converted into 2-(trimethylsilyl)ethyl O-(2-acetamido-4, 6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(l→3)-2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (8) via removal of the phthaloyl and O-acetyl groups, followed by N-acetylation and 4, 6-O-benzylidenation. Glycosylation of 8 with methyl 2, 3, 4-tri-O-benzyl-1-thio-β-L-fucopyranoside (9) gave the α-glycoside (10), which was transformed by reductive ring-opening of the benzyliderie acetal into the acceptor (11). Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 11 with methyl O-(methyl 5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2, 4, 6-tri-O-benzoyl-l-thio-β-D-galactopyra-noside (12) afforded the desired pentasaccharide (13), which was converted into the α-trichloroacetimidate 16 via reductive removal of the benzyl groups, then O-acetylation, removal of the 2-(trimethyIsilyl)ethyl group and treatment with trichloroacetonitrile. Condensation of 16 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l, 3-diol (18) gave the β-glycoside 19, which was transformed into the title compound 21, via reduction of the azido group, coupling with octadecanoic acid, O-deacylation and hydrolysis of the methyl ester group. On the other hand, O-deacylation of 13 and subsequent hydrolysis of the methyl ester group gave the pentasaccharide epitope 17.  相似文献   

10.
Abstract

Ganglioside GM4 and GM3 analogs, containing 3-deoxy-D-glycero-D-galacto-2-nonulopyranosonic acid (KDN) in place of N-acetylneuraminic acid, have been synthesized. KDN, prepared by the condensation of oxalacetic acid with D-mannose, was converted into methyl (phenyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-2-thio-D-glycero-D-galacto-2-nonulopyranosid)onate (2) via methyl esterification, O-acetylation and replacement of the anomeric acetoxy group with phenyl thio. Glycosylation of 2 with 2-(trimethylsilyl)ethyl 6-O-benzoyl-β-D-galactopyranoside (3) or 2-(trimethylsilyl)ethyl O-(6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-2,6-di-O-benzoyl-β-D-glucopyranoside (4) was performed, using N-iodosuccinimide-trimethylsilyl trifluoromethanesulfonate as the glycosyl promoter, to give 2-(trimethylsilyl)ethyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-6-O-benzoyl-β-D-galacto-pyranoside (5) and 2-(trimethylsilyl)ethyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-(6-O-benzoyl-β-D-galactopyrano-syl)-(l→4)-(2,6-di-O-benzoyl-β-D-glucopyranoside (9), respectively. Compounds 5 and 9 were converted via O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the corresponding trichloroacetimidates 8 and 12, respectively. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (13) with 8 and 12 in the presence of boron trifluoride etherate afforded the expected β-glycosides 14 and 17, which were transformed via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation and de-esterification, into the target gangliosides 16 and 19 in high yields.  相似文献   

11.

The addition of benzenethiol to p-chlorophenylphenylacetylene results in the formation of a mixture of two pairs of diastereomeric (E)- and (Z)-1-p-chlorophenyl-2-phenyl-1-phenylthioethylenes (1 and 2) and (E)- and (Z)-1-p-chlorophenyl-2-phenyl-2-phenylthioethylenes (3 and 4). The configurations of these compounds have been established by 1 H NMR studies, by their preparation from benzyl p-chlorophenyl ketone and p-chloro-benzylphenyl ketone, and by the oxidation of the thioethylenes 1, 2, 3, and 4 to the corresponding sulphonylethylenes 5, 6, 7, and 8, respectively.  相似文献   

12.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

13.
Abstract

Stereocontrolled synthesis of sialyl Lex epitope analogs in which the terminal N-acetylglucosamine residue of sialyl Lex determinant is replaced by a D-glucopyranose residue containing β-glycosidically linked azidoalkyl groups is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,6-di-O-benzoyl-3,4-O-isopropylidene-β-D-galactopyra-nosyl)-(1→4)-2,6-di-O-benzoyl-β-D-glucopyranoside (2), prepared from 2-(trimethylsi-lyl)ethyl β-lactoside (1) by 3,4-O-isopropylidenation and selective-O-benzoylation, with methyl 2,3,4-tri-O-benzyl-l-thio-β-L-fucopyranoside (3) gave the desired a-glycoside 4, which was converted by O-deisopropylidenation into 7, and via O-debenzoylation, selective 2,6,6′-tri-O-benzoylation and O-deisopropylidenation into 8, respectively. N-Iodosuccinimide (NIS)-TfOH-promoted glycosylation of 7 or 8 with methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-2-nonulopyra-nosid)onate (9) afforded the desired tetrasaccharides 10 and 11.

Compound 11 was converted into the α-trichloroacetimidate 14 via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group and treatment with trichloroacetonitrile. Coupling of 14 with 2-azidoethanol, 8-azidooc-tanol, and 2-[2-(2-azidoethoxy)ethoxy]ethanol, gave the desired β-glycosides 15-17, respectively. O-Deacylation of 12, 15-17 and subsequent hydrolysis of the methyl ester group yielded the tide compounds.  相似文献   

14.
ABSTRACT

A systematic study is presented for the most common methods used for the preparation of the disaccharide benzyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (9) from “standard 2-amino-2-deoxyglucopyranosyl donors” 1-6 and benzyl 3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (7) as an acceptor. It was found that the highest yield was obtained when the trichloroacetimidate derivative 1 was coupled to the 4 position of acceptor 7. In an analogous manner, the disaccharides allyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6,-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (10), benzyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-galactopyranoside (12), and allyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'3)-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside (14) were prepared.  相似文献   

15.
Abstract

A stereocontrolled synthesis of I-active ganglioside analog is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-O-benzyl-4,6-O-benzylidene-β-d-galactopyranosyl)-(1 → 4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (5) with methyl 4-O-acetyl-1,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (10) by use of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) gave the desired trisaccharide 11, which was transformed into trisaccharide acceptor 14 via removal of the phthaloyl group followed by N-acetylation, and debenzylidenation. Glycosylation of 14 with methyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (8) gave the biantennary compound 15, which was transformed into the acceptor 16. Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 16 with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (17) afforded the desired hexasaccharide 19. Coupling of the hexasaccharide acceptor 20, prepared from 19 by reductive ring-opening of benzylidene acetal, with 17 gave octasaccharide derivative 21. Compound 21 was transformed, via removal of the benzyl group followed by O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the final glycosyl donor 24. Condensation of 24 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (18) gave the β-glycoside 25, which on channeling through selective reduction of azido group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title compound 28.  相似文献   

16.
3-Thioxo-2H-imidazo[1,5-b]isoquinoline-1,5-dione (3) and 2-sub-stituted 3-thioxo-2H-imidazo[1,5-b]isoquinoline-1,5-diones (4a–l) were prepared from the reaction of 2-thiohydantoin (2) and 3-substituted 2-thiohydantoin (5a–l) with 2-formyl benzoic acid (1). Alkylation of 3 under an anhydrous basic conditions afforded 4a–i. The alkylation of 3 in aqueous basic solution afforded 3-(alkylmercapto)imidazo[1,5-b]isoquinoline-1,5-diones (7a,b). Reactions of the aromatic amino acids 9a,b and 12 with 7a afforded 2-(2H-1,5 dioxoimidazo[1,5-b]isoquinazolin-3-ylideneamino)benzoic acids (10a, b) and 3-(2H-1,5-dioxoimidazo[1,5-b]isoquinazolin-3-ylideneamino)2-naphthalenecarboxylic acid (13), which were then cyclyzed by heating in acetic anhydride to afford 15H-isoquino[2′,3′ :3,4] imidazo[2,1-b]quinazoline-7,13,15-triones (11a,b) and 14H-isoquino[2′,3′:3,4]imidazo[2,1-b]benzo[g]quinazoline-8,14,16-trione (14). Some of the new compounds were tested for their antitumor activities.  相似文献   

17.
Using 2-amino-5-chloro-3-fluoropyridine, two new copper halide coordination complexes and two new salts have been synthesized: [(3,5-FCAP)2CuCl2] (1), [(3,5-FCAP)2CuBr2](2), (3,5-FCAPH)2[CuCl4] (3) and (3,5-FCAPH)2[CuBr4] (4) [3,5-FCAP?=?2-amino-5-chloro-3-fluoropyridine; 3,5-FCAPH?=?2-amino-5-chloro-3-fluoropyridinium]. These complexes have been analyzed through single-crystal X-ray diffraction and temperature-dependent magnetic susceptibility. Compounds 1 and 2 crystallize in the triclinic space group P-1, while 3 and 4 crystallize in the monoclinic space group P21/c. All structures were distinct, with 1 giving a bihalide bridged chain, 2 yielding a halide bridged dimer, 3 forming a two-halide bridged chain via short Cl???Cl contacts, and 4 producing a rectangular sheet via short Br???Br contacts. All four compounds exhibit anti-ferromagnetic interactions and were fit to linear chain (1 and 3), dimer (2), and rectangular 2-D sheet (4) models. The resulting J/kB values are ?3.4(1), ?31.3(8), ?0.9(1), and ?9.46(6)?K with an α value (α?=?J?/J) of 0.06(2), respectively.  相似文献   

18.
((CH3)2Au)2C2O4 (1), ((CH3)2AuSCN)2 (2), (CH3)2AuSSP(OCH3)2 (3), and (CH3)2AuSSP(OC2H5)2 (4) were prepared and recrystallized from hexane to determine their crystal structures and analyze them by thermal methods (TGA). The compounds have been investigated as new possible precursors for metal–organic chemical vapor deposition (MOCVD). Compounds 1 and 2 are solids, while 3 and 4 are liquids. Crystal structures of 1 and 2 have been studied by single-crystal X-ray diffraction (XRD): compounds are monoclinic, space group for 1 P21/c, for 2 P21/n. Compound 1 has crystal parameters a?=?7.6952(5)?Å, b?=?11.1814(8)?Å, c?=?12.2893(8)?Å, α?=?90°, β?=?104.922(4)°, γ?=?90°; 2 has crystal parameters a?=?5.6184(3)?Å, b?=?15.2744(6)?Å, c?=?6.9202(3)?Å, α?=?90°, β?=?102.864(2)°, γ?=?90°. These are neutral complexes, in which molecules are only connected by van der Waal's interactions. Thermal gravimetric analyses (TGA) have shown that 3 and 4 evaporate practically without decomposition. MOCVD experiments were carried out at lower pressure using 3 and 4 as precursors. The films were grown on Si substrate and investigated by XRD and SEM.  相似文献   

19.
From the extracts of Dimocarpus longan Lour leaves, 2 unusual flavonol glycosides, quercetin 3-O-(3″-O-2?-methyl-2?-hydroxylethyl)-β-d-xyloside (1) and quercetin 3-O-(3″-O-2?-methyl-2?-hydroxylethyl)-α-l-rhamnopyranoside (2), as well as 10 known compounds including 2 flavonol glycosides, afzelin (3) and kaempferol-3-O-α-l-rhamnopyranoside (4), 2 flavans, ( ? )-epicatechin (5) and proanthocyanidin A-2 (6), 3 triterpenoids, friedelin (7), epifriedelanol (8) and β-amyrin (9), a peptide, N-benzoylphenylalanyl-N-benzoylphenylalaninate (10), and 2 sterols, β-sitosterol (11) and daucosterol (12) were isolated and identified by using combination of mass spectrometry and various 1D and 2D NMR techniques. This is the first report of flavonoid glycosides possessing a 2-methyl-2-hydroxylethoxyl group in sugar moiety from D. longan.  相似文献   

20.
Abstract

The syntheses and crystal structures of [Co(nic)2(H2O)4] (1). [Co(iso)2(H2O)4] (2). [Cu(nic)2(H2O)4] (3), and [Cu(iso)2(H2O)4] (4) (nic = nicotinate; iso = isonicotinate) are reported. Complex 1 crystallizes in monoclinic, space group C2/m with cell parameters a =14.150(4). b = 6.883(2)., c = 8.497(2) Å, β= 118.28(2)° and Z = 2. The other crystals. 2. 3. and 4. are all triclinic, ; a = 9.777(3), b = 6.348(4), c = 6.888(3)Å, a= 113.10(6)., β= 110.55(3). γ = 97.61(5)°, and Z=l for 2; a = 7.0281(4), b = 7.7176(6), c = 8.6978(7)Å, a = 68.103(7), β = 68.526(5), γ = 62.550(6)°, and Z=1 for 3; a = 9.1807(4), b = 6.3334(3), c = 6.8871(3)Å, a= 108.213(4), β = 99.433(4), γ= 105.190(4)°, and Z= 1 for 4. The arrangements around the metal ions are trans-octahedra with two pyridyl nitrogens and two aqua oxygens in the equatorial positions and two aqua oxygens in the axial positions, although the Cu(II) complexes show a larger Jahn-Teller distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号