首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The supramolecular solvent system consists of tetrahydrofuran (THF) and 1-decanol, that was used as an extraction solvent for a microextraction procedure for the preconcentration and separation of Co(II). The proposed supramolecular-based procedure was combined with microsampling flame atomic absorption spectrometry for the determination of cobalt at trace levels in water samples. N-Benzoyl-N,N-diisobutylthiourea was used to chelate Co(II) in an aqueous solution. Quantitative extraction efficiency was obtained at pH 6.5. The effects of analytical parameters including pH, amount of ligand, type, ratio and volume of supramolecular solvent, sample volume and interfering ions were investigated for optimisation of the procedure. The proposed supramolecular solvent-based microextraction procedure (Ss-ME) exhibits a limit of detection (LOD) of 1.29 µg L?1 and a limit of quantification (LOQ) of 3.88 µg L?1. The procedure was validated by addition/recovery tests and by applying TMDA 64.2 and TMDA 53.3 water certified reference materials. The microextraction method was successfully applied for the preconcentration and determination of cobalt in water samples.  相似文献   

2.
A separation-preconcentration method based on supramolecular solvent ultrasonic-assisted liquid-phase microextraction (Ss-USA-LPME) for spectrophotometric determination of mercury as 1-(2-pyridylazo)-2-naphthol (PAN) chelates has been established. Red coloured Hg(II)-PAN hydrophobic complex was extracted into the supramolecular phase (1-decanol/THF) at pH 9.5. The extract was separated from aqueous phase by centrifugation, diluted with ethanol and determined by UV–Vis spectrophotometer at λmax = 560 nm. The influences of important analytical parameters such as pH, amount of PAN, 1-decanol and THF, sample volume and matrix effects for the quantitative recoveries were examined and optimised. Under the optimised experimental conditions, the amount of ligand, 1-decanol and THF were 1.0 × 104 M, 200 µL and 300 µL, respectively. The optimum time of ultrasonic bath and centrifugation were found as 2 min and 5 min. A linear calibration graph was obtained linearly in the concentration ranges of 8.31000 µg L?1. The preconcentration factor was obtained as 20. The limit of detection (LOD) was 2.6 µg L?1 with the relative standard deviation (RSD) of 2.4% for mercury (C = 100 µg L?1, n = 7). The validity of the developed Ss-USA-LPME technique was checked with a certified reference material of NIST 1641d. The presented method has been successfully applied to the determination of mercury in water samples.  相似文献   

3.
Polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) diblock copolymer was functionalized with luminescent chlorotricarbonyl rhenium (I) phenanthroline complex in the presence of silver perchlorate. The copolymer‐metal complex showed high sensitivity to the solvent system. Different morphologies and dimensions of the rhenium complex within nanosized micelles were controlled by changing the solvent systems. Core‐embedded rhenium complex within micelles appear by adding methanol, a poor solvent for the copolymer‐metal complex, to the solution of common solvent tetrahydrofuran (THF); the number of the core‐embedded rhenium complex and the scale of the micelles are strongly related to the addition of methanol. Moreover, a novel morphology of corona‐embedded rhenium complex micelles was prepared by dropping the original THF solution of copolymer‐metal complex into water at a low pH value. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2047–2053, 2008  相似文献   

4.
ABSTRACT

Tandem dispersive liquid liquid microextraction coupled with micro - sampling flame atomic absorption spectrometry for rapid determination of lead2 and cadmium2 ions in environmental water samples. A simple method termed as tandem dispersive liquid–liquid microextraction coupled with micro-sampling flame atomic absorption spectrometry is used for determination of the lead(II) and cadmium(II) ions in different environmental water samples. According to the proposed method, the target analytes are extracted from an aqueous sample solution (10 mL) into a micro-volume of an organic solvent, and then they are selectively back-extracted into an aqueous acceptor solution (150 μL) to increase the compatibility of the extractant phase with a final analyser system and provide a suitable enrichment factor. The developed method is very fast, implemented in just about 7 min, and provides a high sample clean-up. The factors influencing the extraction efficiency including the type and volume of the organic solvent, pH and volume of the acceptor solution, and number of extractions are thoroughly examined and optimised. Under the optimal experimental conditions, the developed method provides a good linearity (in the range of 0.4–300 ng mL?1 (R2 ≥ 0.994)), and low limits of detection (in the range of 0.07–0.31 ng mL?1). Finally, the method is successfully applied for the direct determination of the understudied analytes in the river, dam, and well water samples.  相似文献   

5.
A solid-phase extraction coupled with dispersive liquid–liquid microextraction (DLLME) method followed by graphite furnace atomic absorption spectrometry (GFAAS) was developed for the extraction, preconcentration, and determination of ultra trace amounts of lead in water samples. Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100 mL of lead solution were first concentrated using a solid phase sorbent. The extracts were collected in 1.50 mL of THF and 18 μL of carbon tetrachloride was dissolved in the collecting solvent. Then 5.0 mL pure water was injected rapidly into the mixture of THF and carbon tetrachloride for DLLME, followed by GFAAS determination of lead. The analytical figures of merit of method developed were determined. With an enrichment factor of 1,800, a linear calibration of 3–60 ng L?1 and a limit of detection of 1.0 ng L?1 were obtained. The relative standard deviation for seven replicate measurements of 30 ng L?1 of lead was 5.2 %. The relative recoveries of lead in mineral, tap, well, and river water samples at spiking level of 10 and 20 ng L?1 are in the range 94–106 %.  相似文献   

6.
We report the synthesis, micellar structures, and multifunctional sensory properties of new conjugated rod‐coil block copolymers, poly(3‐hexylthiophene)‐block‐poly(2‐(di methylamino)ethylmethacrylate)(P3HT‐b‐PDMAEMA). The new copolymers, synthesized by atom transfer radical polymerization of P3HT macroinitiator, consisted PDMAEMA coil lengths of 43, 65, and 124 repeating units. All the P3HT‐b‐PDMAEMA copolymers exhibit a similar low critical solution temperature in water around 33 °C. The micellar structures of the synthesized polymers were characterized by AFM, TEM, and dynamic light scattering, by varying temperature, pH, and water/THF composition. The micelles of P3HT20b‐PDMAEMA43 in water had a reversible size change from 75 ± 5 nm to 132 ± 5 nm on heating from 25 to 55 °C and reduced to the original size during cooling. In addition, the micellar size also showed a significant pH dependence, changing from 67 ± 8 nm (pH = 12) to 222 ± 6 nm (pH = 4), depending on the protonation of the PDMAEMA blocks and their electrostatic repulsion. The micellar structure of three P3HT‐b‐PDMAEMA copolymers changed from spheres, to vesicles, and finally to larger sphere micelles as the solvent composition varied from 0 to 100 wt % water in the mixed solvent. The different micellar structures of P3HT20b‐PDMAEMA43 solution led to a red‐shift on the absorption or photoluminescence spectra and exhibited the emission colors of yellow, orange, red, and dark red with increasing the water content. This study suggested that new copolymers had potential applications as multifunctional sensory materials toward temperature, pH, and solvent. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
The protonation constants of some α-amino acids (glycine (Gly), l-alanine (Ala), l-valine (Val), l-serine (Ser), l-leucine (Leu) and l-isoleucine (Ile)) were studied in water and DMSO–water solution mixtures containing 30, 50 and 70 vol-% DMSO; in addition the complex formation equilibria of their copper(II) complexes were studied by potentiometric technique using a combined pH electrode system calibrated in concentration units of the hydrogen ion at 25 ± 0.1 °C under a nitrogen atmosphere, and at an ionic strength of 0.10 mol·dm?3 NaNO3. The protonation constants and the overall stability constants of copper(II) complexes were influenced by changes in solvent composition, and their variations are discussed in terms of solvent and structural properties.  相似文献   

8.
In this study, a simple, rapid, low cost, sensitive and environmentally friendly technique, supramolecular solvent microextraction (SM-SME) followed by high performance liquid chromatography-ultraviolet has been proposed to extract carbaryl from water samples. Parameters, affecting the SM-SME performance such as the weight of decanoic acid (DeA), volume of tetrahydrofuran (THF), pH and salt concentration, were studied and optimised. The effect of the pH on the extraction efficiency was evaluated by one–factor-at-a-time methodology, but the other variables were optimised by a face-centred cube central composite design methodology. Optimum extraction conditions were obtained: DeA: 70 mg; THF: 650 µL; salt concentration: 10% (w/v) NaCl and pH = 2–4), and the performance of the proposed method was evaluated. Under the optimum conditions, good linearity (1.0–500 µg L?1, r2 = 0.9994) was obtained. Limit of detection and limit of quantification were 0.3–1.0 µg L?1, respectively. Also, the recoveries of the carbaryl were obtained in the ranged from 96% to 105%. Finally, proposed method was successfully applied for the determination of the carbaryl in the water samples of farms run-off and rivers and satisfactory results were obtained.  相似文献   

9.
Abstract

Herein we report the reversible activation of CO2 by the dearomatized complex [(tBuPNP*)Ir(COE)] (1) and by the aromatized complex [(tBuPNP)Ir(C6H5)] (2) via metal-ligand cooperation (MLC) (tBuPN = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine; tBuPNP* = deprotonated PNP; COE = cyclooctadiene). The [1,3]-addition of CO2 to 1 and 2 is reversible at ambient temperature. While the dearomatized complex 1 reacts readily at ambient temperature with CO2 in THF or benzene, complex 2 reacts with CO2 upon heating in benzene at 80 °C or at ambient temperature in THF. The novel aromatized complex [(tBuPNP)IrCl] (10) does not react with CO2. Based on the reactivity patterns of 1, 2, and 10 with CO2, we suggest that CO2 activation via MLC takes place only via the dearomatized species, and that in the case of 2 THF plays a role as a polar solvent in facilitating formation of the dearomatized hydrido phenyl complex intermediate (complex II).  相似文献   

10.
A new tailor-made colorimetric chemosensor 1, containing pyridine and benzothiazole moieties connected through an azo (–N = N–) linkage has been synthesised. In 9:1 (v/v) aqueous THF (pH 7.0 HEPES buffer), it showed a conspicuous naked-eye colour change upon binding to Ni2+ (colourless to light green) and AcO (colourless to orange) resulting in their ratiometric sensing. The cation and anion recognition property of the chemosensor 1 was monitored by UV–vis spectral analysis and 1H NMR titrations.  相似文献   

11.

Doxorubicin (DOX) belongs to the group of anthracycline antibiotics with very effective anticancer properties. On the other hand, the cardiotoxic effects limit its application over the maximum cumulative dose. To overcome this obstacle, encapsulation of this drug into the protective nanotransporter such as apoferritin is beneficial. In this study, fluorescent behavior of DOX in various solvents was determined by fluorescence spectrometry, demonstrating the fluorescence quenching effect of water, which is often used as a solvent. It was found that by increasing the amount of the organic phase in the DOX solvent the dynamic quenching is significantly suppressed. Ethanol, acetonitrile and dimethyl sulfoxide were tested and the best linearity of the calibration curve was obtained when above 50 % of the solvent was present in the binary mixture with water. Moreover, pH influence on the DOX fluorescence was also observed within the range of 4–10. Two times higher fluorescence intensity was observed at pH 4 compared to pH 10. Further, the DOX behavior in capillary electrophoresis (CE) was investigated. Electrophoretic mobilities (CE) in various pH of the background electrolyte were determined within the range from 16.3 to −13.3 × 10 −9 m−2 V−1 s−1. Finally, CE was also used to monitor the encapsulation of DOX into the cavity of apoferritin as well as the pH-triggered release.

  相似文献   

12.
Abstract

This research presents the synthesis and characterization of the photochemical nitric oxide (NO) precursor Ru(salenCO2H)(NO)Cl (1, salenCO2H = N,N’-ethylenebis(3,3’-bis-carboxylsalicylideneiminato). This water-soluble ruthenium nitrosyl releases NO upon photolysis with a quantum yield that is pH dependent owing to the nitrosyl to nitrite conversion of that axial ligand at higher pH. Also described are the water, oxygen, and thermal stability of 1 and the cytotoxicity and the vascular relaxivity properties of 1 in the dark and under photolysis.  相似文献   

13.
Reaction of bromoacylsilane 1 (pink solution) with tBu2MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at −78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E‐[(tBuMe2Si)(tBu2MeSi)C=Si(SiMetBu2)] [Li⋅4THF]+ 2 a (green–blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet–red solution) with two THF molecules bonded to the lithium atom. The 2 a ⇌ 2 b interconversion is reversible upon THF⇌ benzene solvent change. Both 2 a and 2 b were characterized by X‐ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si−Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic 29Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X‐ray molecular structure of both the SSIP and the CIP of any R2E=E′RM species (E=C, Si; E′=C, Si; M=metal).  相似文献   

14.

The purpose of the present work is to develop a simple, rapid, sensitive and accurate method for the derivatization and subsequently preconcentration of Hg(II) and the determination of its derivative, diphenylmercury, in natural water samples using gas chromatography-flame ionization detection. The method is based on the diphenylation using phenyl boronic acid, subsequent extraction of phenylmercury into a single drop of an organic solvent (toluene), followed by gas chromatography-flame ionization detection GC-FID analysis of the extract. The pH of the feed solution was kept in pH 5 with acetate buffer solution. Thus, the optimized conditions are: organic solvent, toluene; derivatization time, 10 min; extraction time, 15 min; microdrop volume, 1.6 μL; stirring rate, 600 rpm; sample volume, 5 mL. The limit of detection (LOD), calculated on the basis of five replicates was 0.02 μg mL−1. The relative standard deviation of the method (RSD%, n = 5) was 3.0. Linear range was between 0.05 and 5 μg mL−1 and preconcentration factor obtained for phenyl-mercury was 105.

  相似文献   

15.
A series of 17,17‐dialkyl‐3,14‐diaryltetrabenzofluorenes were efficiently prepared by using Suzuki–Miyaura cross‐coupling reactions of the corresponding 3,14‐dibromo derivatives. Studies of the unique fluorescence properties of these compounds showed that they display intense blue to yellow fluorescence with high quantum yields in the solution state and blue to orange fluorescence with moderate quantum yields in the solid state. In addition, the fluorescence wavelength of the bis(p‐nitrophenyl) derivative is remarkably solvent‐dependent in a manner that correlates with the solvent polarity parameter ET(30). The results of density function theory calculations suggest that the intramolecular charge‐transfer character of the HOMO–LUMO transition is responsible for the large solvent effect. Moreover, addition of water to a tetrahydrofuran (THF) solution of this compound leads to quenching of the yellow fluorescence owing to an increase in the solvent polarity. However, when the amount of water fraction exceeds 70 %, a new fluorescence band appears at the same orange‐red emission wavelength as that of the solid‐state fluorescence. This observation suggests the occurrence of a crystallization‐induced emission (CIE) phenomenon in highly aqueous THF.  相似文献   

16.
The preferential solvation parameters of methocarbamol in dioxane + water, ethanol + water, methanol + water and propylene glycol + water mixtures are derived from their thermodynamic properties by using the inverse Kirkwood–Buff integrals (IKBI) method. This drug is sensitive to solvation effects, being the preferential solvation parameter δx1,3, negative in water-rich and co-solvent-rich mixtures, but positive in mixtures with similar proportions of solvents, except in methanol + water mixtures, where positive values are found in all the methanol-rich mixtures. It is conjecturable that the hydrophobic hydration around the non-polar groups in water-rich mixtures plays a relevant role. Otherwise, in mixtures of similar solvent compositions, the drug is mainly solvated by co-solvent, probably due to the basic behaviour of the co-solvents; whereas, in co-solvent-rich mixtures, the preferential solvation by water could be due to the acidic behaviour of water. Nevertheless, the specific solute–solvent interactions present in the different binary systems remain unclear.  相似文献   

17.
We have synthesized two ditopic ligands for selective extraction of copper(II) nitrate. We also synthesized one cation-only binding analog for comparison. All three ligands were characterized by conventional techniques. Competitive two-phase metal ion solvent extraction experiments were performed at 25 °C over a period of 24 h. These ligands showed significant selectivity for Cu(II) ions, having the ditopic ligands extract 81 and 73% of the Cu(II) ions in a solution of different metal ions {Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Pb(II)} at pH 5.09. Competitive transport experiments (water/chloroform/water) were undertaken employing each ligand separately as the ionophore in the membrane (chloroform) phase. No metal ion transport was observed, but a large concentration of Cu(II) was present in the membrane phase. Competitive anion extraction and transport were carried out with the ditopic ligands, yielding selective extraction and transport of nitrate. Furthermore, a pH isotherm of the best ditopic ligand (H2L2) with Cu(II) was determined from pH 1.0 to 6.0, producing a pH½ value of approximately 2.6. Finally, crystal structures of the ditopic ligands complexed with Cu(II) were determined and refined. The coordination geometry around the metal centers are distorted square planar and the Cu(II)-donor bond lengths fall within the normal range.  相似文献   

18.
A blue-green-emitting three-dimensional supramolecular compound (C10O2N2H8)(C9O7H6) (1) was synthesised under hydrothermal conditions and structurally characterised by elemental analysis, IR spectrum, 1H NMR and single-crystal X-ray diffraction. The crystal belongs to triclinic system with P 1¯ space group. The crystal structure is stabilised by O–H…O, O–H…N hydrogen bonds and π–π interactions (π–π stacking distance is 3.282 Å). Compound 1 exhibits intense green luminescence in solid state at 298 K (λem = 546 nm). In addition, absorption and fluorescence characteristics of compound 1 have been investigated in different solvents (DMSO, CH3CN and CH3OH). The results show that compound 1 exhibits a large red shift in both absorption and emission spectra as solvent polarity increases (polarity: DMSO>CH3CN>CH3OH), indicating a change in dipole moment of compound 1 upon excitation. Although the emission spectra of compound 1 in CH3OH are close to it in dimethyl sulfoxide (DMSO), it is revealed that the luminescence behaviour of compound 1 depends not only on the polarity of environment but also on the hydrogen bonding properties of the solvent. Meanwhile, temperature strongly affects the emission spectra of compound 1. Emission peaks of compound 1 were blue shift at 77 K than those at 298 K in both solid state (ca. 142 nm) and solution (ca. 6–23 nm), which was due to the non-radiative transition decreases at low temperature. Moreover, the quantum yield and fluorescence lifetime of compound 1 were also measured, which increased with increasing polarity of solvent, lifetime in DMSO at 298 K (τ1 = 0.92 μs, τ2 = 8.71 μs) was the longest one in solvents (298 K: τ1 = 0.87–0.92 μs, τ2 = 7.50–8.71 μs; 77 K: τ1 = 0.72–0.90 μs, τ2 = 6.88–7.45 μs), which was also shorter than that in solid state (298 K: τ1 = 1.13 μs, τ2 = 7.50 μs; 77 K: τ1 = 0.97 μs, τ2 = 8.97 μs). This was probably because of the weak polarity environment of compound 1 in solid state.  相似文献   

19.
Doxorubicin (DOX) belongs to the group of anthracycline antibiotics with very effective anticancer properties. On the other hand, the cardiotoxic effects limit its application over the maximum cumulative dose. To overcome this obstacle, encapsulation of this drug into the protective nanotransporter such as apoferritin is beneficial. In this study, fluorescent behavior of DOX in various solvents was determined by fluorescence spectrometry, demonstrating the fluorescence quenching effect of water, which is often used as a solvent. It was found that by increasing the amount of the organic phase in the DOX solvent the dynamic quenching is significantly suppressed. Ethanol, acetonitrile and dimethyl sulfoxide were tested and the best linearity of the calibration curve was obtained when above 50 % of the solvent was present in the binary mixture with water. Moreover, pH influence on the DOX fluorescence was also observed within the range of 4–10. Two times higher fluorescence intensity was observed at pH 4 compared to pH 10. Further, the DOX behavior in capillary electrophoresis (CE) was investigated. Electrophoretic mobilities (CE) in various pH of the background electrolyte were determined within the range from 16.3 to ?13.3 × 10 ?9 m?2 V?1 s?1. Finally, CE was also used to monitor the encapsulation of DOX into the cavity of apoferritin as well as the pH-triggered release.  相似文献   

20.
Reaction of bromoacylsilane 1 (pink solution) with tBu2MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at ?78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E‐[(tBuMe2Si)(tBu2MeSi)C=Si(SiMetBu2)]? [Li?4THF]+ 2 a (green–blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet–red solution) with two THF molecules bonded to the lithium atom. The 2 a ? 2 b interconversion is reversible upon THF? benzene solvent change. Both 2 a and 2 b were characterized by X‐ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si?Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic 29Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X‐ray molecular structure of both the SSIP and the CIP of any R2E=E′RM species (E=C, Si; E′=C, Si; M=metal).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号