首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study a method of flow-assisted automated solid-phase microextraction (FA-SPME) was developed for the determination of organic pollutants in aqueous samples. A CTC Combi-PAL autosampler coupled with gas chromatography–mass spectrometry (GC–MS) was used to automate the entire extraction process. In this method, the SPME fibre was exposed to 100 mL of sample in a direct immersion mode for 10 min. After exposure, the fibre was desorbed at the injection port of GC–MS. To demonstrate the applicability of FA-SPME, chloroethers were selected as model compounds. Good linear correlation was found over a concentration range of 0.5–100 µg/L. The detection limits of the method were determined between 0.02 and 0.05 µg/L with the coefficients of determination (R2) from 0.9980 to 0.9996. The relative standard deviations (RSDs) of the FA-SPME for three sequential FA-SPME analyses were determined to be in the range between 1.2% and 6.2% (n = 3). The applicability of the method was assessed by means of recovery studies and satisfactory values for all compounds were obtained. This optimised method was used in the analysis of water and human urine samples to show the matrix effect on FA-SPME. This FA-SPME/GC–MS is substantially faster and suitable for the routine continuous flow-mode environmental monitoring applications.  相似文献   

2.

Some aroma compounds found in alcoholic beverages are characteristic of a certain beverage (i.e. 2,4-decadienoic acid ethyl ester is characteristic of pear spirit and 5-butyltetrahydro-4-methylfuran-2-on “whiskey lactone” is characteristic of aged spirits like whiskey). These substances were detectable in beverages but not in blood samples. The aim of this investigation was to find a sensitive sampling technique for aroma compounds in whole blood samples. This technique may be used in forensic toxicology for examination of drinking claims. The method comprises dynamic headspace sampling using a purge and trap concentrator, followed by quantitative gas chromatography–mass spectrometry (dynamic HS–GC–MS). The influence of sample preparation, trap adsorbents and sample temperature as well as desorption time and purge time on the quality of the analytical results were investigated. The following optimal parameters were determined: stirred and diluted whole blood sample without salt addition, use of Carbotrap C as trap material, sample temperature at 80 °C, desorption time 20 min and purge time 30 min. These optimal parameters were used for the determination of detection limits (LOD). The LOD of aroma compounds by means of dynamic headspace sampling were compared with the results of conventional sampling: the static headspace technique. Limits of detection for the aroma compounds with conventional static headspace GC are in the range 400–10,000 μg L−1. Dynamic headspace–GC was found to be a more sensitive sampling technique for most of the aroma compounds investigated (e.g. C4–C8 ethyl esters, benzoic acid ethyl ester, linalool oxide and 4-ethylguaiacol) with detection limits between 1 and 50 μg L−1, but there were also limits to the sampling of substances with lower volatility like decanoic acid ethyl ester, 2,4-decadienoic acid ethyl ester, eugenol and whiskey lactone with detection limits of about 1,000 μg L−1.

  相似文献   

3.
Some aroma compounds found in alcoholic beverages are characteristic of a certain beverage (i.e. 2,4-decadienoic acid ethyl ester is characteristic of pear spirit and 5-butyltetrahydro-4-methylfuran-2-on “whiskey lactone” is characteristic of aged spirits like whiskey). These substances were detectable in beverages but not in blood samples. The aim of this investigation was to find a sensitive sampling technique for aroma compounds in whole blood samples. This technique may be used in forensic toxicology for examination of drinking claims. The method comprises dynamic headspace sampling using a purge and trap concentrator, followed by quantitative gas chromatography–mass spectrometry (dynamic HS–GC–MS). The influence of sample preparation, trap adsorbents and sample temperature as well as desorption time and purge time on the quality of the analytical results were investigated. The following optimal parameters were determined: stirred and diluted whole blood sample without salt addition, use of Carbotrap C as trap material, sample temperature at 80 °C, desorption time 20 min and purge time 30 min. These optimal parameters were used for the determination of detection limits (LOD). The LOD of aroma compounds by means of dynamic headspace sampling were compared with the results of conventional sampling: the static headspace technique. Limits of detection for the aroma compounds with conventional static headspace GC are in the range 400–10,000 μg L?1. Dynamic headspace–GC was found to be a more sensitive sampling technique for most of the aroma compounds investigated (e.g. C4–C8 ethyl esters, benzoic acid ethyl ester, linalool oxide and 4-ethylguaiacol) with detection limits between 1 and 50 μg L?1, but there were also limits to the sampling of substances with lower volatility like decanoic acid ethyl ester, 2,4-decadienoic acid ethyl ester, eugenol and whiskey lactone with detection limits of about 1,000 μg L?1.  相似文献   

4.
Park  Yang Ki  Chung  Woo Young  Kim  Byungsub  Kye  Young-sik  Shin  Moon-sik  Kim  Dongwook 《Chromatographia》2013,76(11):679-685

Ion-pair single-drop microextraction (SDME) coupled to gas chromatography–mass spectroscopy (GC–MS) methods for the determination of four degradation products of chemical warfare agents were investigated in water. Acidic analytes were converted into their ion-pair complexes with cation surfactants in aqueous sample and then extracted into the organic single drop containing the derivatising agent. Upon injection, the analytes were derivatised in the GC injection hot port. Parameters, such as type of extraction solvent, ion-pairing (IP) reagent, reagent concentration, salt concentration, stirring speed and pH, were all optimized. This method is reproducible for spiked water sample for four different analytes (RSDs < 9.33 %, n = 5) and linear (r 2 > 0.9945). The limit of detection (LOD) is in the range of 0.08–0.01 ng mL−1 (S/N = 5) under GC–MS selected ion monitoring mode. The method was successfully applied to the proficiency test samples from the Organization for Prohibition of Chemical Weapons (OPCW).

  相似文献   

5.
《Analytica chimica acta》2004,513(1):257-262
Wines produced from Baga native variety from the Portuguese Bairrada Appellation, harvest 2000, were submitted to a liquid–liquid continuous extraction with dichloromethane and analysis by gas chromatography–mass spectrometry (GC–MS). A total of 53 compounds were identified and quantified. This wine has 225 mg l−1 volatile compounds, which include aliphatic and aromatic alcohols (44%), acids (27%), esters (15%), lactones (6%), amides (5%), and phenols (1%). To achieve the identification of the major would-be impact odourants, the aroma index was calculated using the concentration of each volatile component and the corresponding odour threshold reported in the literature. This methodology proved suitable, as a preliminary step, for the determination of the would-be impact odourants of Baga wine. From the 53 compounds identified, nine were determined as the most powerful odourants: guaiacol, 3-methylbutanoic acid, 4-ethoxycarbonyl-γ-butyrolactone, isobutyric acid, 2-phenylethanol, γ-nonalactone, octanoic acid, ethyl octanoate and 4-(1-hydroxyethyl)-γ-butyrolactone. These data suggest Baga wine as a fruity-type product with an aroma correlated to a restricted number of compounds.  相似文献   

6.
Essential oil from the leaves of Guatteria australis was obtained by hydrodistillation, analyzed by Gas Chromatography coupled to Mass Spectromery (GC–MS) and their antiproliferative, antileishmanial, antibacterial, antifungal and antioxidant activities were also evaluated. Twenty-three compounds were identified among which germacrene B (50.66%), germacrene D (22.22%) and (E)-caryophyllene (8.99%) were the main compounds. The highest antiproliferative activity was observed against NCI-ADR/RES (TGI = 31.08 μg/ml) and HT-29 (TGI = 32.81 μg/ml) cell lines. It also showed good antileishmanial activity against Leishmania infantum (IC50 = 30.71 μg/ml). On the other hand, the oil exhibited a small effect against Staphylococcus aureus ATCC 6538, S. aureus ATCC 14458 and Escherichia coli ATCC 10799 (MIC = 250 μg/ml), as well as small antioxidant activity (457 μmol TE/g) assessed through ORACFL assay. These results represent the first report regarding chemical composition and bioactivity of G. australis essential oil.  相似文献   

7.
Keshet  Uri  Fialkov  Alexander B.  Alon  Tal  Amirav  Aviv 《Chromatographia》2016,79(11):741-754

We designed and operated a new system of pulsed flow modulation (PFM) two dimensional comprehensive gas chromatography (GC × GC) mass spectrometry (MS). This system is based on the combination of PFM–GC × GC with a quadrupole mass spectrometer of GC–MS via a supersonic molecular beams interface and its fly-through Cold EI ion source and applied this system for the analysis of JP8 jet fuel. PFM is a simple GC × GC modulator that does not consume cryogenic gases while providing tunable second GC × GC column injection time for enabling the use of quadrupole based mass spectrometry regardless its limited scanning speed. We analyzed JP8 jet fuel with our new PFM–GC × GC–MS with Cold EI system and found that as the second dimension GC elution time is increased the observed molecular ion mass is reduced. This unique observation that helped in improved sample compounds identification under co-elution conditions was enabled via having abundant molecular ions in Cold EI for all the fuel compounds. We named this type of analysis as PFM–GC × GC × MS. We found and discuss in this paper that PFM–GC × GC–MS with Cold EI combines improved separation of GC × GC with Cold EI benefits of tailing-free ultra-fast ion source response time and enhanced molecular ions and mass spectral isomer and isotope information for the provision of increased sample identification information.

  相似文献   

8.
A series of new compounds based on aromatically 2,5‐disubstituted 1,3,4‐oxadiazoles without flexible chains, formulated as p‐R–C6H4–(OC2N2)–(p‐C6H4)2–R′ with (i) R = CH3O, R′ = CH3O, CH3S, F, H (Ia–Id), (ii) R = CH3S, R′ = CH3O, CH3S, F, H (IIa–IId) and (iii) R = F, R′ = CH3O, CH3S, F, H (IIIa–IIId) (p‐C6H4 and OC2N2 represent a p‐phenylene spacer and a 1,3,4‐oxadiazole ring, respectively), were synthesised and characterised by 1H and 13C NMR, MS and HRMS techniques. Mesomorphic properties were investigated using differential scanning calorimetry and polarizing optical microscopy. All of the target compounds (except Id, IId, IIIc and IIId) exhibited an enantiotropic nematic mesophase with high melting temperatures. The liquid crystalline properties of these compounds were influenced greatly by polarity, steric factors and positions of the terminal groups. The effect of the terminal groups on the liquid crystal properties is discussed.  相似文献   

9.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) is the most serious pest of cruciferous crops grown in the world causing economic yield loss. Several synthetic insecticides have been used against P. xylostella but satisfactory control was not achieved due to development of resistance to insecticides. Therefore, the present study was carried out to screen different fractions of Zanthoxylum armatum for their insecticidal activities against second instar larvae of P. xylostella. Results indicate, all the fractions showed activity to P. xylostella. However, n-hexane fraction of Z. armatum showed maximum larvicidal activity with minimum LC50 value of 2988.6 ppm followed by ethanol (LC50 = 12779.7 ppm) and methanol fraction (LC50 = 12908.8 ppm) whereas chloroform fraction was least toxic (LC50 = 16750.6 ppm). The GC–MS analysis of n-hexane fraction of leaf extract showed maximum larvicidal activity, which may be due to two major compounds i.e. 2-undecanone (19.75%) and 2-tridecanone (11.76%).  相似文献   

10.
An efficient and fast microwave-assisted extraction (MAE) method followed by gas chromatographic separation with mass spectrometric detection (GC–MS) was developed for the extraction of 18 organochlorine pesticides (OCPs) from sediment. Parameters affecting the MAE procedure such as the type and volume of the extraction solvent, irradiation power, temperature and irradiation time were successfully optimised. Under the optimal conditions, extraction efficiencies in the range of 73.4–119% were obtained with THF–HEX (9:1, v/v) for all OCPs studied. The method was linear over the range of 2.9–5000 ng g?1 with determination coefficients (r2) higher than 0.992 for all analytes. The limits of detection, LODs (S/N = 3), obtained varied from 1.0 to 2.2 ng g?1 and limits of quantification, LOQs (S/N = 10) were between 2.9 and 6.8 ng g?1. The proposed method was successfully applied to the analysis of real sediment samples and acceptable recoveries from 70.1 to 124% with RSDs ≤14.8% were obtained. 10 OCPs were determined below their LOQ and 8 OCPs in the range of 124–2830 ng g?1. The MAE method was compared with Soxhlet, shake flask and ultrasonic solvent extraction techniques. Thus, the MAE–GC–MS method could efficiently be used for selective extraction and quantification of the target analytes from the complex sediment matrices.  相似文献   

11.
Lophostemon suaveolens is a relatively unexplored endemic medicinal plant of Australia. Extracts of fresh leaves of L. suaveolens obtained from sequential extraction with n-hexane and dichloromethane exhibited antibacterial activity in the disc diffusion and MTT microdilution assays against Streptococcus pyogenes and methicillin sensitive and resistant strains of Staphylococcus aureus (minimum bactericidal concentration < 63 μg/mL). The dichloromethane extract and chromatographic fractions therein inhibited nitric oxide in RAW264.7 murine macrophages (IC50 3.7–11.6 μg/mL) and also PGE2 in 3T3 murine fibroblasts (IC50 2.8–19.7 μg/mL). The crude n-hexane, dichloromethane and water extracts of the leaves and chromatographic fractions from the dichloromethane extract also showed modest antioxidant activity in the ORAC assay. GC–MS analysis of the n-hexane fraction showed the presence of the antibacterial compounds aromadendrene, spathulenol, β-caryophyllene, α-humulene and α-pinene and the anti-inflammatory compounds β-caryophyllene and spathulenol. Fractionation of the dichloromethane extract led to the isolation of eucalyptin and the known anti-inflammatory compound betulinic acid.  相似文献   

12.
The aroma compounds of ayran were isolated using solvent-assisted flavor evaporation (SAFE) resulting in a more representative extract of ayran odor compared to liquid–liquid extraction (LLE), solid-phase extraction (SPE), and simultaneous distillation–extraction (SDE). The aromatic extract was subjected to sensory analysis and identified and quantified by gas chromatography–mass spectrometry (GC–MS). A total of 19 volatile compounds were detected that included alcohols, aldehyde, acids, esters, ketones, and terpenes. However, the compounds present at the highest concentrations were ethyl lactate, ethanol, 2,3-butanediol, acetoin, and acetic acid. The key odorants for the ayran drinks were detected using aroma extract dilution analysis (AEDA) and GC–MS–olfactometry (GC–MS–O). A total of 14 aroma-active compounds were determined for the first time. The flavor dilution (FD) factors ranged between 4 and 512 while their odor activity values (OAVs) were from 1.35 to 1126.99. Ethyl lactate (FD of 512 whey/creamy), 2-methylbutanal (FD of 512, fruity), acetoin (FD of 256, buttery creamy), and butanoic acid (FD of 256, cheesy-sweet) were the strongest aroma-active components of the Ayran drink.  相似文献   

13.
A key bottleneck in the profiling of lipids is the multistep derivatization required prior to gas chromatography (GC) analysis. A single in-vial lipid derivatization and analysis may significantly minimize sample loss and improve analytical sensitivity. A cotton fiber-supported poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) polymer microbrush microreactor loaded with Candida antarctica lipase B was developed for the facile conversion of triacylglycerols into fatty acid ethyl ester derivatives for gas chromatograph–mass spectrometry (GC–MS) analysis. The polymer microbrush microreactor was fabricated in effort to provide efficient, simplified, cost effective, and high-throughput GC–MS determination of triacylglycerols. The polymer microbrush microreactor was used as an in-vial triacylglycerol transesterification platform, with economical sample consumption of less than or equal to 100?µL and significant reduction of reagents. To evaluate the polymer microbrush microreactor performance for lipids, a triolein standard and camelina oil triacylglycerols were quantitatively transformed into ethyl oleate and fatty acid ethyl esters, respectively, following a 3?h reaction time. The lipase-loaded cotton fiber-supported poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) polymer microbrush microreactors were reusable for up to five times for quantitative transesterification with minimal loss of lipase activity.  相似文献   

14.
《Analytical letters》2012,45(3):408-423
A solid phase derivative extraction method using acetic anhydride was developed for the determination of chlorophenols and alkylphenols in water and fruit juice by gas chromatography–mass spectrometry (GC–MS). The quantitative extraction was performed by passing 100 mL of sample prepared in 0.1 mol L?1 sodium hydroxide through a column packed with 500 mg of a strong anion-exchange resin at a flow rate of 0.75 mL min?1. The retained phenols were quantitatively derivatized in the column by the introduction of 0.25 mL of acetic anhydride. The derivatized phenols were eluted with 3.0 mL of hexane and the effluent was dried under nitrogen. The final volume was diluted to fifty microliters with hexane and analyzed by GC–MS. Under the optimum conditions, preconcentration factors of 2000, limits of detection between 0.005 and 1.796 µg L?1, and relative standard deviations of 2.1% to 6.7% were obtained. The method was successfully applied to wastewater and fruit juice and the recoveries of phenols were between 76% and 111%.  相似文献   

15.

A recently developed hydrodistillation–solvent microextraction (HD–SME) method coupled to gas chromatography–mass spectrometry (GC–MS) was applied to the analysis of volatile components of aerial parts of Echinophora cinerea (Boiss). By the use of a simplex optimization method, the effects of extraction time, sample weight and microdrop volume on the extraction efficiency of the method were optimized. In the optimized conditions, 3 µL of n-heptadecane was suspended in the headspace of 6 g of hydrodistillating sample, using a microsyringe. After 7 min, the solvent was retracted back into the syringe and directly injected into the GC–MS injection port. The HD–SME method was compared to a conventional hydrodistillation technique. In general, the extraction with HD–SME was relatively faster and required smaller amounts of sample. The microextraction method also showed some selectivity towards α-phellandrene and Z-β-ocimene monoterpenes. A precision better than 6.5% (expressed as relative standard deviation) was obtained for the method.

  相似文献   

16.
Ion-pair single-drop microextraction (SDME) coupled to gas chromatography–mass spectroscopy (GC–MS) methods for the determination of four degradation products of chemical warfare agents were investigated in water. Acidic analytes were converted into their ion-pair complexes with cation surfactants in aqueous sample and then extracted into the organic single drop containing the derivatising agent. Upon injection, the analytes were derivatised in the GC injection hot port. Parameters, such as type of extraction solvent, ion-pairing (IP) reagent, reagent concentration, salt concentration, stirring speed and pH, were all optimized. This method is reproducible for spiked water sample for four different analytes (RSDs < 9.33 %, n = 5) and linear (r 2 > 0.9945). The limit of detection (LOD) is in the range of 0.08–0.01 ng mL?1 (S/N = 5) under GC–MS selected ion monitoring mode. The method was successfully applied to the proficiency test samples from the Organization for Prohibition of Chemical Weapons (OPCW).  相似文献   

17.
《Analytical letters》2012,45(13):2231-2245
Abstract

A rapid and reliable analytical method, at trace level concentration was developed and validated for monitoring polychlorinated biphenyls (PCBs) in Jordanian surface water. The method combines the advantage of liquid extraction together with gas chromatography‐mass spectrometry (GC/MS) and gas chromatography‐electron capture detector (GC/ECD). The performance of the method was evaluated by analyzing certified reference material (CRM) of the analytes and applied on real water samples collected from different sites in Jordan. A mixture of 60∶40 dichloromethan‐petroleum ether was chosen as a convenient binary solvent for liquid–liquid extraction. The GC conditions for GC/MS were optimized using He as a carrier gas, temperature programming, and chlorpropham as an internal standard (IS).

The conditions for GC/ECD were performed using N2 gas and a temperature program from 160 to 280°C with different increasing rates. The method of GC/MS in the selective ion mode (SIM) gave linear relationships for all PCBs tested between 0.60–6.0 µg/l with R 2=0.9934 (n=7×18). Recoveries from spiked water samples ranged between 87.6 and 91.4%. The mean accuracy and precision obtained were 4.9% and 2.16%, respectively. The mean of detection limit was 0.14±0.04 µg/l. In GC/ECD, linear relationships for all PCBs examined over the range of 0.3–2.4 µg/l was verified as characterized by a linear regression equation and correlation coefficient, R 2=0.9915 (n=12). The average precision and accuracy were 4.86% and 5.21%, respectively. Analyses results clarified that none of the examined Jordanian water samples contained any of the searched for PCBs within the detection limit achieved.  相似文献   

18.
Grasses (family Poaceae) are economically important plants; they are used as crops and animal foods. Stipagrostis plumosa (L.) Munro ex T. Anderson is a member of this family and subjected to chemical and biological studies. The chromatographic techniques,  LC–ESI–MS and GC/MS were used for identification of polar and non-polar compounds in its extract. Ten compounds, including one new flavone glycoside; tricin 7-O-galactoside, three known flavones, three C-glycosyl flavones and three phenolic acids, were isolated from S. plumosa for the first time except tricin. Their structures were elucidated on the basis of extensive spectroscopic interpretation. In addition to the isolated compounds, eleven compounds were tentatively identified using LC–ESI–MS, five of them were detected for the first time from this species. 29 non polar compounds were identified using GC–MS analysis, representing 83.13% of S. plumosa diethyl ether extract. In addition to the DPPH activity evaluation, the crude extract and the isolated compounds were investigated against five human carcinoma cell lines; A549, HCT-116, HepG2, MCF-7 and PC3 at a concentration of 100 μg/ml. From the isolated compounds tricin and luteolin 6,8-di-C-glucoside could be considered as natural-free radical scavenging agents.  相似文献   

19.
Liang  Shuang  Xu  Xuanwei  Lu  Zhongbin 《Chromatographia》2015,78(23):1491-1498

A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) rapid detection method followed by gas chromatography–tandem mass spectrometry (GC–MS) has been developed for the simultaneous determination of 42 pesticides in Panax ginseng. This method can be different from the other QuEChERS methods in the sense that it uses acetone and n-hexane solution rather than acetonitrile to extract and partition pesticides. This acetone, water and n-hexane solution QuEChERS method consists essentially of two steps: extraction/partitioning and purification. In step 1, P. ginseng was mixed with acetone, water and n-hexane solution, and then partitioned by vortex. In step 2, the top layer (n-hexane) was transferred into a centrifuge tube containing primary secondary amine, activated carbon and C18 for purification. After the centrifuge supernatant was injected into GC–MS. The QuEChERS method was applied in P. ginseng detection and we confirmed that this method can easily extract various types of pesticides from P. ginseng. The rates of recovery for pesticides studied were satisfactory, ranging from 75.3 to 119.4 % for most of the pesticides with a relative standard deviation of less than 13 %. The LOQs ranged between 0.5 and 1.2 µg kg−1. The modified QuEChERS method and GC–MS could enable complex pretreatment in P. ginseng analysis quickly and easily.

  相似文献   

20.
Procedure for isolation of pyrrolizidine alkaloids (PAs) from Rindera umbellata Bunge plant species was optimised. Different extraction media (methanol, ethanol and sulphuric acid), concentration and volume of sulphuric acid, pH of PA solution for alkaline extraction, extraction time and techniques (maceration, ultrasonic and overhead rotary mixer assisted extraction) were investigated. The yields of six PAs (7-angeloyl heliotridane, 7-angeloyl heliotridine, lindelofine, 7-angeloyl rinderine, punctanecine and heliosupine) were monitored by GC–MS/FID. The best results for the isolation all of six PAs were obtained when the extraction was performed with 1 M sulphuric acid (30 mL per 1.00 g of dried sample) by overhead rotary mixer during three days. Optimal pH value for alkaline extraction of PAs with CH2Cl2 was 9, and the extraction should be performed with four portions of 30 mL of CH2Cl2. This procedure could be also useful for a plant sample preparation for GC and LC analyses of PAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号