首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Molecular dynamics simulations have been performed to explore interface growth of liquid Cu50Ni50 alloy by using an embedded atom potential, namely due to Zhou. The simulated melting temperature is 1585 K in agreement well with the experimental value of 1600 K. The calculated interface velocity increases with decreasing temperature ranging from 1585 K to 1100 K, where the calculated values are a little higher than the experimental ones at higher temperatures, and in agreement with the experimental ones at lower temperatures; while the calculated interface velocity decreases with decreasing temperature lower than 1100 K. The activation energy of atom is 0.0048 eV, almost close to zero under deep undercoolings, although the crystal growth still proceeds with the speed ranging from 50 m s?1 to 10 m s?1. The crystal growth of Cu50Ni50 is not controlled by diffusion mechanism under deep undercoolings.  相似文献   

2.
We report the polymorphic behaviour, in melt cooling experiments, of racemic betaxolol, a low aqueous solubility selective β1-adrenergic antagonist drug with a flexible molecular structure. A multidisciplinary approach is employed, using thermal analysis (differential scanning calorimetry, polarised light thermomicroscopy), spectroscopic methods (infrared spectroscopy, magic angle spinning 1H NMR) and X-ray powder diffraction. A glass phase is obtained, T g ~ ?10 °C, on cooling the melt, unless the cooling rate is ≤0.5 °C min?1, while a new metastable form, polymorph II, T fus = 33 °C, is generated in subsequent heating runs in a two step process. Although either partial crystallisation from the melt in the first step or the formation of an intermediate, metastable, low ordered phase may explain these observations, our results favour the second hypothesis. The stable polymorph I, T fus = 69 °C, which crystallizes on further heating after form II melting, has also been obtained either from polymorph II or from the molten phase, on standing at 25 °C. The racemic betaxolol crystalline phases are found to exhibit some degree of disorder.  相似文献   

3.
The bulk superconducting YCa2Cu3O7−δ compounds are prepared at an ordinary pressure of oxygen by conventional solid-state reaction method. The formation of sample is tested by means of XRD and is studied for their ac susceptibility below room temperature up to 77.5 K. The samples are found single-phase orthorhombic structure and found superconducting at 83.5 K. It is shown that the analysis is consistent with published data on YBa2Cu3O7−δ oxide superconductor.  相似文献   

4.
We report on the stabilisation of the liquid-crystalline, twist-grain boundary A (TGBA) phase in mixtures of a chiral liquid crystal and surface-functionalised spherical Au nanoparticles (NPs) of 10 nm diameter. The results, obtained by calorimetric, optical, small-angle X-ray and plasmon resonance measurements, demonstrate that a TGBA phase, which is metastable for the pure liquid crystal host, can be effectively stabilised for a 3 K range in the presence of NPs. Moreover, the role of NPs size on the TGBA stabilisation is briefly discussed.  相似文献   

5.
The interactions of [Au(cis-DACH)Cl2]Cl and [Au(cis-DACH)2]Cl3 [where cis-DACH is cis-1,2-diaminocyclohexane] with enriched KCN were carried out in CD3OD and D2O, respectively. The reaction pathways of these complexes were studied by 1H, 13C, 15N NMR, UV spectrophotometry, and electrochemistry. The kinetic data for the reaction of cyanide with [Au(cis-DACH)2]Cl3 are k = 18 M?1s?1, ?H = 11 kJ M?1, ?S = ?185 JK?1 M?1, and Ea = 13 kJ M?1 with square wave voltammetric (SWV) peak +1.35 V, whereas the kinetic data for the reaction of cyanide ion with [Au(cis-DACH)Cl2]Cl are k = 148 M?1s?1, ?H = 39 kJM?1, ?S = ?80 JK-1 M?1, and Ea = 42 kJM?1 along with SWV peak +0.82 V, indicating much higher reactivity of [Au(cis-DACH)Cl2]Cl toward cyanide than [Au(cis-DACH)2]Cl3. The interaction of these complexes with potassium cyanide resulted in an unstable [Au(13CN)4]? species which readily underwent reductive elimination reaction to generate [Au(13CN)2]? and cyanogen.  相似文献   

6.
A gold–copper alloy with a nominal composition of Cu3Au but with a tetragonal (c = 4a) structure is observed to form at Au/Cu interfaces of gold/copper multilayers deposited on amorphous substrates by d.c. magnetron sputtering. The formation of this non‐equilibrium structure (tentatively D023) under‐ambient conditions is detected by secondary ion mass spectrometry, x‐ray diffraction and high‐resolution cross‐sectional transmission electron microscopy. Co‐sputtering of Au and Cu under similar conditions produces only conventional fcc Cu3Au alloy phases, suggesting that interfacial confinement plays a significant role in producing the novel Cu3Au alloy phase in gold/copper multilayers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
We perform density-functional theory calculations to investigate the water–gas-shift (WGS) reaction on Cu6TM (TM = Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) clusters through redox, carboxyl, and formate mechanisms, which correspond to CO* + O* → CO2 (g), CO* + OH* → COOH* → CO2 (g) + H*, CO* + H* + O* → CHO* + O* → HCOO** → CO2(g) + H* respectively. An energetic span model is used to estimate the efficiency of the three mechanisms of different Cu6TM. It finds that for groups 9 and 10, carboxyl mechanism is the predominant mechanism in the three. While for Cu6TM (Cu, Ag, Au), it finds that the formate mechanism form the TDI and TDTS. Furthermore, the turnover frequency calculations are done for every Cu6TM cluster. The results show that Cu6Co is the best catalyst for WGS reaction. Finally, to understand the high catalytic activity of the Cu6Co cluster, the nature of the interaction between adsorbate and substrate is also analyzed by the detailed electronic local density of states. These findings enrich the applications of Cu-based materials to the high activity catalytic field.  相似文献   

8.
Order–disorder phase transitions in Cu0.6Pd0.4 and Cu0.85Pd0.15 alloys have been investigated using differential scanning calorimetry and drop calorimetry. The differential scanning calorimetry measurements show that the transition in both these alloys are reversible in nature and the enthalpy increment measurements reveal that these transitions are first order in nature. The transition temperature of first-order phase transition in Cu0.6Pd0.4 and Cu0.85Pd0.15 alloys have been evaluated to be 884(±2) and 799(±2) K, respectively, from drop calorimetric measurements. The latent heat of first-order phase transition in Cu0.6Pd0.4 alloy were evaluated to be 31.2(±0.6) and 28.9(±0.5) J g?1, by enthalpy increment and differential scanning calorimetry measurements, respectively. Similarly, the latent heat of first-order phase transition in Cu0.85Pd0.15 alloy were evaluated to be 23.1(±0.6) and 21.3(±0.5) J g?1, by enthalpy increment and differential scanning calorimetry measurements, respectively. The solidus temperatures of Cu0.6Pd0.4 and Cu0.85Pd0.15 alloys were found to be 1,457(±2) and 1,360 K, respectively.  相似文献   

9.
The rapid quenching processes of Fe75Cu25 melt at different cooling rate are investigated by molecular dynamics simulation based on embedded atom method. Fe75Cu25 alloy ribbons are prepared by single roller rapid quenching. Liquid–liquid phase separation (LLPS) happens and the Cu-rich droplets embedded in the Fe-rich matrix can be observed both in simulation and experiments. Stronger interaction of homogeneous atom pairs than that of heterogeneous atom pairs leads to LLPS, controlled by nucleation growth mechanism in Fe75Cu25 melt, and quite different from that in Fe50Cu50 melt, which is controlled by spinodal decomposition mechanism. During the crystallisation process after LLPS, the new nuclei form only in Fe-rich regions; various multiply twinning boundaries are formed due to the minimisation of interfacial energy and only the homogeneous atomic stacking shows mirror symmetry along twinning boundary. The results provide atomic-scale understanding of phase separation mechanism and structure transition of Fe75Cu25 melt during rapid cooling processes.  相似文献   

10.
Mono-phase high critical temperature (Bi,Pb)-2223 superconductor from the off-stoichiometric Bi1.8Pb0.3Sr2Ca2Cu3.3Ox belonging to the tetragonal system, has been obtained. We studied the crystalline structure, the stress of second order, and the texture of the surface pellet, in the framework of XRD diffractometry. Results of the thermal measurements made in the nitrogen, with a heating rate of 10 K min?1, from room temperature (RT) to 1273.15 K, show a slow mass decrease of 1.25 % from RT to 1003.15 K probably due to the elimination of water, oxygen, and of the other gases accumulated on the crystallite surface through chemical adsorption. Two endothermic processes were evidenced on DSC, and DTG curves: the first in the range of 1135.15–1193.15 K (melting and slow decomposition), and another after 1217.45 K (decomposition). The contribution of crystal lattice to the estimated specific heat capacity was in conformity with the Einstein model, giving for the Einstein temperature a value of 1297.5 K. In conformity with the Müller critical state model, we found linear dependences for intragrain critical transition temperature, T g, and intergrain coupling temperature, T p, versus the amplitude of the external AC magnetic fields. There was evidenced that intergrain critical currents are five orders smaller than the intragrain critical currents.  相似文献   

11.
In the present work aluminium oxide (Al2O3) nanoparticles were synthesised by the precipitation method using AlCl3 as a starting material. The synthesised nanoparticles were characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). These nanoparticles have been dispersed in base fluid, an aqueous solution of ethylene glycol (EG). Density (ρ), ultrasonic velocity (u), and viscosity (η) for these nanofluids have been measured at different concentrations as a function of temperature (T = 303.15 K, 308.15 K, and 313.15 K). Using their values various acoustical and thermodynamical parameters have been computed.  相似文献   

12.
The temperature dependences of the heat capacityC 0 p of fullerites C60 were studied at temperatures ranging from 5 to 320 K in an adiabatic vacuum calorimeter with an accuracy of 0.4–0.2%. The fullerite C60 samples were prepared by treating the starting fullerite C60 under 8 GPa at 920 and 1270 K and “quenched” by a sharp decrease in pressure to −105 Pa and in temperature to ∼300 K. Fullerite C60(8 GPa, 920 K), a crystalline polymer with layered structure formed by polymerized fullerene C60 molecules, was obtained at 920 K and 8 GPa. Fullerite C60(8 GPa, 1270 K), a three-dimensional polymer with a graphite-like structure formed by fragments of decomposed C60 molecules and containing many C(sp3)−C(sp3) bonds, was obtained at 1270 K and 8 GPa. Both polymers are metastable polymeric phases. The anomalous character of the temperature dependence of the heat capacity was revealed in the 49–66 K range for the polymer formed at 1270 K. The thermodynamic functions of the substances under study were calculated for the 0–320 K region along with entropies of their formation from graphite. The entropies of transformation of the starting fullerite C60 into metastable phases and that of intertransformation of phases were estimated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 277–281, February, 2000.  相似文献   

13.
ε-Fe2O3/SiO2 nanocomposite was prepared by novel solgel method using single precursor for both nanoparticles and matrix. This method allows to prepare the samples free of α-Fe2O3 with 40% of Fe2O3 in SiO2. Nanoparticles of 12 nm diameter were obtained by annealing at 1,000 °C. The samples were characterized by powder X-ray diffraction and transmission electron microscopy. Mössbauer spectroscopy identified ε-Fe2O3 as the only magnetically ordered phase at room temperature. Magnetic measurements revealed progressive necking of hysteresis loops measured at 300 and 2 K. In both cases the intrinsic coercivity reaches only 0.25 T. Measurements up to 14 T shows monotonous decreasing trend of saturated magnetization with increasing temperature.  相似文献   

14.
The non-isothermal crystallisation kinetics of Se90?xIn10Sbx (x = 0, 1, 2, 4, 5) chalcogenide glasses prepared by a conventional melt quenching technique was studied using the differential scanning calorimetry (DSC) measurement at different heating rates 5, 7, 10 and 12 °C min?1. The values of the glass transition temperature T g and the crystallisation temperature T c are found to be composition and heating rate dependent. The activation energy of glass transition E g, Avrami index n, dimensionality of growth m and activation energy of crystallisation E c have been determined from different models.  相似文献   

15.
Synchrotron X-ray data have been collected to 1.4 Å resolution at the NE-CAT beam-line at the Advanced Photon Source from fibers of cellulose Iβ and regenerated cellulose II (Fortisan) at ambient temperature and at 100 K in order to understand the effects of low temperature on cellulose more thoroughly. Crystal structures have been determined at each temperature. The unit cell of regenerated cellulose II contracted, with decreasing temperature, by 0.25%, 0.22% and 0.1% along the a, b, and c axes, respectively, whereas that of cellulose Iβ contracted only in the direction of the a axis, by 0.9%. The value of 4.6×10?5 K?1 for the thermal expansion coefficient of cellulose Iβ in the a axis direction can be explained by simple harmonic molecular oscillations and the lack of hydrogen-bonding in this direction. The molecular conformations of each allomorph are essential unchanged by cooling to 100 K. The room temperature crystal structure of regenerated cellulose II is essentially identical to the crystal structure of mercerized cellulose II.  相似文献   

16.
Uniform Cu2S nanodisks have been synthesized from a well‐characterized layered copper thiolate precursor by structure‐controlling solventless thermolysis at 200–220 °C under a N2 atmosphere. The development from small Cu2S nanoparticles (diameter ≈3 nm) to nanodisks (diameter 8.3 nm) and then to faceted nanodisks (diameter 27.5 nm, thickness 12.7 nm) is accompanied by a continuous phase transition from metastable orthorhombic to monoclinic Cu2S, the ripening of small particles by aggregation, and finally the crystallization process. The growth of the nanoproduct is constrained by the crystal structure of the precursor and the in situ‐generated thiol molecules. Such controlled anisotropic growth leads to a nearly constant thickness of faceted nanodisks with different diameters, which has been confirmed by TEM observations and optical absorption measurements.  相似文献   

17.
In this study, covellite (CuS) nanoparticles were synthesized through a facile and low temperature thermal decomposition method using [Cu(sal)2]- oleylamine complex, (sal = salicylaldehydeato, prepared in situ from [Cu(sal)2] and oleylamine as the precursors), and sulfur as the Cu2+ source and S source, respectively. Scanning electron microscope, transmission electron microscope, electron diffraction and ultraviolet–visible absorption (UV–Vis) spectra were used for the characterization of the products. The effect of reaction parameters, such as the copper:sulfur molar ratio, the reaction temperature and the reaction time on the shape, size and phase of CuS nanostructures, was investigated. The results showed that the, covellite (hexagonal structure of CuS) with an average size between 20 and 45 nm could be obtained with the Cu:S molar ratio of 1: 3 at 105 °C for 60 min. With increasing the reaction temperature from 105 to 200 °C, non-stoichiometric Cu1.65S with the average size of 25–50 nm was obtained due to the different existing state of the released Cu2+ ions from the copper-oleylamine complex.  相似文献   

18.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

19.
A mixed valence copper(II)–copper(I) coordination polymer has been synthesized starting from a copper(II) salt at ambient condition and characterized by IR and Raman spectra and single crystal X-ray diffraction. The structure of the complex consists of a 1-D infinite chain with repeating unit [Cu(1,2-pn)23-I)Cu22-I)3(CH3CN)] and a free CH3CN, where 1,2-pn = 1,2-diamino-1-propene. The complex shows a very short copper(I)–copper(I) distance (2.412?Å).  相似文献   

20.
The trinuclear copper complex, [Cu33-OH)(CTMB)3(NO3)2(CH3CN)2]·5CH3CN·H2O (1) {CTMB = cyclohexotriazole-3-(4-methoxybenzamide)}, has been prepared by mixing Cu(NO3)2·2.5H2O and CHMBH {CHMBH = N,N′-cyclohexane-1,2-diylidene-bis(4-methoxybenzoylhydrazide)} in acetonitrile under ambient conditions. Compound 1 was characterized by IR and UV–visible spectroscopies as well as elemental analyses. X-ray crystallography shows that the cluster contains a {Cu33-OH)} core supported by three triazole-based Schiff base ligands. Each Cu is bound to the 2-N of one triazole ring and the 1-N of another. However, the coordination sphere of each Cu is different, one is five-coordinate and the other two are six-coordinate and bridged by a NO3 group. The six-coordinate sites are different, one has a terminal NO3 and the other a MeCN ligand. Magnetic measurements revealed the presence of isotropic and antisymmetric exchange between the copper(II) centers. The data were analyzed using the Hamiltonian containing isotropic exchange for an isosceles triangle together with antisymmetric exchange: H = –J1(S1S2 + S2S3)?J2S1S3 + G[S1 × S2 + S2 × S3 + S3 × S1]. Compound 1 exhibits strong antiferromagnetic coupling with J1 = ?180 and J2 = ?118 cm?1 and antisymmetric exchange with Gz = 15 cm?1. Stopped flow spectrophotometric studies show that the formation of 1 occurs in three distinct phases and the kinetics of each phase has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号