首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ruthenium(II) complexes with electron-donor or electron-acceptor groups in intercalative ligands, [Ru(phen)2(o-MOP)]2+ (1), [Ru(phen)2(o-MP)]2+ (2), [Ru(phen)2(o-CP)]2+ (3) and [Ru(phen)2(o-NP)]2+ (4), have been synthesized and characterized by elementary analysis, ES-MS, 1H NMR, electronic absorption and emission spectra. The binding properties of these complexes to CT-DNA have been investigated by spectroscopy and viscosity experiments. The results showed that these complexes bind to DNA in intercalation mode and their intrinsic binding constants (Kb) are 1.1, 0.35, 0.53 and 1.7 × 105 M−1, respectively. The subtle but detectable differences occurred in the DNA-binding properties of these complexes are mainly ascribed to the electron-withdrawing abilities of substituents (–OCH3 < –CH3 < –Cl < –NO2) on the intercalative ligands as well as the intramolecular H-bond (for substituent –OCH3) which increase the planarity area of the intercalative ligand to some extent. The density functional theory (DFT) calculations were also performed and used to further discuss the trend in the DNA-binding affinities of these complexes.  相似文献   

2.
DNA-binding properties of a number of ruthenium complexes with different polypyridine ligands are reported. The new polypyridine ligand BFIP (=2-benzo[b] furan-2-yl-1H-imidazo[4,5-f][1,10]phenanthroline) and its ruthenium complexes [Ru(bpy)2BFIP]2+ (bpy = 2,2′-bipyridine), [Ru(dmb)2BFIP]2+ (dmb = 4,4′-dimethyl-2,2′-bipyridine), and [Ru(phen)2BFIP]2+ (phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, mass spectra, IR, UV-Vis, 1H- and 13C-NMR, and cyclic voltammetry. The DNA binding of these complexes to calf-thymus DNA (CT-DNA) was investigated by spectrophotometric, fluorescence, and viscosity measurements. The results suggest that ruthenium(II) complexes bind to CT-DNA through intercalation. Photocleavage of pBR 322 DNA by these complexes was also studied, and [Ru(phen)2BFIP]2+ was found to be a much better photocleavage agent than the other two complexes.  相似文献   

3.
A bidentate ligand, 5-chloro-2-(phenylazo)pyridine (Clazpy), and its two polypyridyl ruthenium(II) complexes, [Ru(Clazpy)2bpy]Cl2·7H2O (1) and [Ru(Clazpy)2phen]Cl2·8H2O (2), were synthesized and characterized. The DNA-binding properties of these complexes with DNA, the breast cancer susceptibility gene 1 (BRCA1), and the pBIND plasmid DNA were probed by photocleavage, electronic absorption titration, ethidium bromide quenching, and thermal denaturation. Both complexes were found to bind to the BRCA1 fragment through the intercalative mode into the base pairs of DNA, and the DNA-binding constants (Kb) for 1 and 2 were 7.0 × 104 M−1 and 5.1 × 105 M−1, respectively. In addition, both complexes enhanced the single-stranded cleavage of the plasmid DNA. Under comparable experimental conditions, 2 cleaved DNA more effectively than 1, in a dose–response manner. The data indicated that the binding affinity of these two complexes to DNA was dependent on the aromatic planarity and hydrophobicity of the intercalative polypyridyl ligand.  相似文献   

4.
Two polypyridine ruthenium(II) complexes, [Ru(dmp)2(MCMIP)]2+ (1) (MCMIP = 2-(6-methyl-3-chromonyl)imidazo[4,5-f][1,10]-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline) and [Ru(dmb)2(MCMIP)]2+ (2) (dmb = 4,4′-dimethyl-2,2′-bipyridine), have been synthesized and characterized by elemental analysis, ES-MS and 1H NMR. The DNA-binding behaviors of these complexes were investigated by electronic absorption titration, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The results show that 1 and 2 effectively bind to CT-DNA; the DNA-binding affinities are closely related to the ancillary ligand.  相似文献   

5.
Three Ru complexes coordinated by oxfloxacin, [Ru(L)2(OFX)]Cl·2H2O (L = bpy, 1; dmbpy, 2; phen, 3; and OFX = ofloxacin), were synthesized and characterized. These complexes can inhibit the growth of cervical cancer HeLa cells efficiently. Furthermore, these three complexes exhibited excellent binding affinities with DNA, as confirmed by spectroscopy methods and viscosity experiments. Therefore, the synthesized Ru(II) complexes have excellent DNA-binding abilities with potential applications in cancer chemotherapy.  相似文献   

6.
Two polypyridyl ligands 6-fluro-3-(1H-imidazo [4,5-f] [1,10]-phenanthroline-2-yl)-4H-chromen-4-one (FIPC), 6-chloro-3-(1H-imidazo [4,5-f] [1,10]-phenanthroline-2-yl)-4H-chromen-4-one (ClIPC) polypyridyl ligands and their Ru(II) complexes [Ru(bipy)2FIPC]2+(1), [Ru(dmb)2FIPC]2+(2), [Ru(phen)2FIPC]2+(3), [Ru(bipy)2ClIPC]2+(4), [Ru(dmb)2ClIPC]2+(5) and [Ru(phen)2ClIPC]2+(6) ((bipy = 2,2′-bipyridine, dmb = 4,4′-dimethyl-2,2′-bipyridine and phen = 1,10-phenanthroline) have been synthesised and characterised by elemental analysis, Mass spectra, IR, 1H and 13C-NMR. The DNA-binding of the six complexes to calf-thymus DNA (CT-DNA) has been investigated by different spectrophotometric, fluorescence and viscosity measurements. The results suggest that 1–6 complexes bind to CT-DNA through intercalation. The variation in binding affinities of these complexes is rationalised by a consideration of electrostatic, steric factors and nature of ancillary ligands. Under irradiation at 365 nm, the three complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA. Inhibitor studies suggest that singlet oxygen (1O2) plays a significant role in the cleavage mechanism of Ru(II) complexes. Thereby, under comparable experimental conditions [Ru(phen)2FIPC]2+(3), [Ru(phen)2ClIPC]2+(6) cleaves DNA more effectively than 1, 2, 4 and 5 complexes do. The Ru(II) polypyridyl complexes (1–6) have been screened for antimicrobial activities.  相似文献   

7.
A novel dinuclear ruthenium(II) complex [(phen)2Ru(mbpibH2)Ru(phen)2]4+ [phen = 1,10-phenanthroline; mbpibH2 = 1,3-bis(1,10-phenanthroline[5,6-d]imidazol-2-yl)-benzene] has been synthesized and characterized. The DNA-binding behavior of this complex has been studied by spectroscopic and viscosity measurements. Results suggest that the dinuclear ruthenium(II) complex intercalates into DNA base pairs via its bridging moiety. It has also been found that the dinuclear ruthenium(II) complex displays the enantiopreferential DNA-binding after equilibrium dialysis.  相似文献   

8.
Two ruthenium(III) complexes containing ethylenediaminetetraacetate(edta), viz. [{Ru(Hedta)}2L]·xH2O L = 4,4′-bipyridine(bpy) (1) and 4,4′-azopyridine(Azpy) (2), have been synthesized by the reaction between K[Ru(Hedta)Cl]·1.5H2O and the corresponding N-heterocycles. Complex 1 was determined by single-crystal X-ray diffraction. The products were characterized by IR, UV–vis, cyclic voltammetry, and magnetic techniques. Their DNA-binding activities were investigated using electronic absorption spectroscopic methods and ?uorescence quenching; the experimental results show that these two ruthenium complexes may bind to CT-DNA through intercalation modes.  相似文献   

9.
The perchlorate salts of two new ruthenium(II) complexes incorporating 2-(2′-pyridyl)naphthoimidazole are synthesized in good yield. Complexes [Ru(phen)2(PYNI)]2+ (phen = 1,10-phenanthroline) 1 and [Ru(dmp)2(PYNI)]2+ (dmp = 2,9-dimethyl-1,10-phenanthroline, PYNI = 2-(2′-pyridyl)naphthoimidazole) 2 are fully characterized by elemental analysis, FAB-MS, ES-MS, 1H NMR and cyclic voltammetric methods. The DNA-binding behavior of the complexes have been studied by spectroscopic titration, viscosity measurements and thermal denaturation. Absorption titration and thermal denaturation studies reveal that these complexes are moderately strong binders of calf-thymus DNA (CT-DNA), with their binding constants spanning the range (2.73–5.35) × 104 M?1. The experimental results show that 1 interacts with calf thymus DNA (CT-DNA) by intercalative mode, while 2 binds to CT-DNA by partial intercalation.  相似文献   

10.
Abstract

Two new ruthenium(II) complexes, [Ru(bpy)2(DClPIP)](ClO4)2 (1) and [Ru(phen)2(DClPIP)](ClO4)2 (2) (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, and DClPIP = 2-(2,4-dichlorophenyl)-1H-imidazo[4,5-f][1, 10]phenanthroline), have been prepared in high yield by using microwave-assisted synthesis technology. The anticancer activity of the two ruthenium(II) complexes against A549, C6, CNE-1 and MDA-MB-231 cell lines has been evaluated by MTT assay and results showed that 2 exhibited higher antitumor activity than 1 toward all the selected tumor cell lines. Besides, A549 cell line was sensitive to both ruthenium(II) complexes, especially to 2 (IC50 = 8.01?±?0.36?μM). Meanwhile, 2 showed low toxicity against MCF-10A human normal cells. Furthermore, the DNA-binding properties of the two new ruthenium(II) complexes with CT-DNA have been investigated by electronic absorption titration, luminescence spectra, circular dichroism spectra and viscosity measurements. The results suggested that 1 and 2 were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 2?>?1. All of these results suggested that anticancer activity of both ruthenium(II) complexes could be closely related to their interaction with DNA.  相似文献   

11.
Two new Ru(II) complexes, [Ru(bpy)2(pmip)]2+ (1) and [Ru(phen)2(pmip)]2+ (2), have been synthesized and characterized by elemental analysis, ESI-MS and 1H NMR spectra. Their DNA-binding properties were studied by means of UV–VIS, emission and CD spectra, thermal denaturation and viscosity measurements as well as their DNA-photocleavage properties. The experimental results show that both 1 and 2 can bind to DNA in an intercalative mode; the DNA-binding affinity of 2 is greater than that of 1, which suggests that the ancillary ligands have a significant effect on the spectroscopic properties and DNA-binding behavior of the Ru(II) complexes. Under irradiation with UV light, the Ru(II) complexes show excellent efficiency of cleaving DNA. This research may provide valuable insight into the interactions of metal complexes with DNA, knowledge that is an excellent backdrop for the rational design of promising drugs.  相似文献   

12.
Two ruthenium(II) dithiocarbamates, cis-[Ru(DMP)2L](BF4), where L = 4-(4-methoxy-phenyl)piperazine-1-carbodithioate (1) and 4-(3-methoxyphenyl)piperazine-1-carbodithioate (2) and DMP = 2,9-dimethyl-1,10-phenanthroline, have been synthesized and characterized. The DNA-binding affinity of these metal complexes was investigated by UV–visible spectrophotometry with DNA-binding constants of 6.2 × 104 M?1 (1) and 1.2 × 105 M?1 (2) and electrostatic binding mode was confirmed by viscometric measurements. For insight into the structural differences, both complexes were studied computationally. B3LYP/LANL2DZ level of Density Functional Theory was used for the computational studies in Gaussian 09. The optimized bond lengths are in agreement with the reported values. Comparative computational studies reveal interesting transformations in bond lengths, angles, Natural Bond Orbital charges, molecular orbitals, Molecular Electro Static Potentials, and global chemical reactivity indices. Based on quantum chemical results a structure–activity relationship has been attempted.  相似文献   

13.
Two ruthenium(II) polypyridyl complexes, namely [Ru(phen)2(DMDPPZ)](ClO4)2 1 (phen = 1,10-phenanthroline, DMDPPZ = 3,6-dimethyldipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(dmp)2(DMDPPZ)](ClO4)2 2 (dmp = 2,9-dimethyl-1,10-phenanthroline), have been synthesized and characterized. The DNA-binding properties of the complexes were investigated by spectrophotometric methods, viscosity measurements, and photoactivated cleavage studies. The DNA-binding constants for complexes 1 and 2 have been determined as 8.78 (±0.94) × 105 M−1 (s = 3.02) and 1.26 (±0.35) × 105 M−1 (s = 1.69), respectively. The results suggest that these complexes bind to calf thymus DNA through intercalation. When irradiated at 365 nm, the complexes promote the photocleavage of pBR322 DNA, and complex 1 cleaves DNA more effectively than complex 2 under comparable experimental conditions. The cytotoxicities of complexes 1 and 2 have been evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) method. Complex 2 shows higher anticancer potency than complex 1 against four tumor cell lines. The apoptosis-inducing activity was assessed by acridine orange/ethidium bromide staining assay, and the antioxidant activities of these complexes against hydroxyl radical were also explored.  相似文献   

14.
A novel ligand 3‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐2‐yl)‐4H‐1‐benzopyran‐4‐one (ipbp) and its ruthenium(II) complexes [Ru(bpy)2(ipbp)]2+ ( 1 ) and [Ru(ipbp)(phen)2]2+ ( 2 ) (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis and mass, 1H‐NMR, and electronic‐absorption spectroscopy. The electrochemical behavior of the complexes was studied by cyclic voltammetry. The DNA‐binding behavior of the complexes was investigated by spectroscopic methods and viscosity measurements. The results indicate that complexes 1 and 2 bind with calf‐thymus DNA in an intercalative mode. In addition, 1 and 2 promote cleavage of plasmid pBR 322 DNA from the supercoil form I to the open circular form II upon irradiation.  相似文献   

15.
Three ruthenium(II) polypyridyl complexes [Ru(dmb)2(dadppz)]2+ 1, [Ru(bpy)2(dadppz)]2+ 2 and [Ru(phen)2(dadppz)]2+ 3 were synthesized and characterized by elemental analysis, ES-MS, 1H NMR and 13C NMR. Their DNA-binding behaviors were investigated by absorption titration, fluorescence spectroscopy and viscosity measurements. Cytotoxicity in vitro, apoptosis, cell cycle arrest, cellular uptake and reactive oxygen species assays were performed. The complexes were found to show moderate DNA-binding affinities and high cytotoxicities toward A549, BEL-7402, MG-63 and SKBR-3 cell lines. These complexes can effectively induce apoptosis of BEL-7402. In cell cycle assays, the complexes induced S-phase arrest on BEL-7402 cells and G0/G1-phase arrest on SKBR-3 cells. The DNA-binding experiments showed that the three complexes interact with CT-DNA through an intercalative mode.  相似文献   

16.
Three Ru(II) complexes, namely [Ru(bipy)2PRIP]2+ (1), [Ru(dmb)2PRIP]2+ (2), and [Ru(phen)2PRIP]2+ (3) (dmb = 4,4′-dimethyl-2,2′-bipyridine; PRIP = 2-(pyrrole) imidazo [4,5-f]-1,10-phenanthroline) have been synthesized and characterized by elemental analysis, mass spectra, IR, 1H NMR and 13C NMR. The DNA-binding properties of the three complexes with calf-thymus DNA (CT-DNA) were investigated by spectrophotometry, fluorescence methods and viscosity measurements. The results suggest that all three complexes bind to CT-DNA through intercalation. Also, when irradiated at 365 nm, the three complexes promote the photocleavage of plasmid pBR-322 DNA. Under comparable experimental conditions, complex 3 cleaves DNA more effectively than complexes 1 and 2.  相似文献   

17.
Polypyridyl ligand 9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone (BDPPZ) and its complexes [Ru(bpy)2BDPPZ]2+, [Ru(dmb)2BDPPZ]2+ and [Ru(phen)2BDPPZ]2+ (where bpy = 2,2′‐bipyridine, dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized and characterized by elemental analysis, IR, UV–vis, 1H‐NMR, 13C‐NMR and mass spectra. The DNA‐binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the three complexes can intercalate into DNA base pairs. Photo activated cleavage of pBR‐322 DNA by the three complexes was also studied. Further, all three Ru(II) complexes synthesized were screened for their antimicrobial activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
An asymmetric ligand (pdpiq?=?2-(pyridine-2-yl)-6,7-diphenyl-1-H-imidazo[4,5-g]quinoxaline) and its ruthenium complexes with [Ru(L)2pdpiq]2+ (L?=?bpy (2,2′-bipyridine) or phen (1,10-phenanthroline)) have been synthesized and characterized by elemental analysis, ES-MS, and 1H NMR. The DNA-binding behaviors of these complexes were studied by spectroscopic methods and viscosity measurements. The results indicate that the complexes can intercalate into DNA base pairs. When irradiated at 365?nm, the two complexes promote the cleavage of plasmid pBR322DNA. The mechanism of DNA cleavage is an oxidative process by generating singlet oxygen.  相似文献   

19.
Density functional theory calculations were performed on [Ru(L)3]2+ (L = 1,10-phenanthroline, 2,2′-bipyridine, 2,2′-bipyrimidine, 2,2′-bipyrazine) complexes by employing B3PW91 functional and LAN2DZ basis set to predict their spectra and nonlinear optical response. The geometrical and coordination energy studies explained that the stability of [Ru(L)3]2+ metal complexes depends on the extent of interaction of the dπ orbitals of Ru2+ with the π* ligand orbitals, which is maximum for 1,10-phenanthroline. The two enantiomers of the [Ru(L)3]2+ show IR absorption peaks in the region of 1100–1800 cm?1, and a slight shift occurs to lower frequency by solvent. The vibrational circular dichroism peaks of [Ru(phen)3]2+ had major contribution from out-of-phase stretching of 1,10-phenanthroline rings and a minor contribution from H–C=C–H wagging and C=C stretching of rings. Maximum hyperpolarizability was observed for [Ru(phen)3]2+ due to stronger anharmonicity in the π-electron system. Among the [Ru(L)3]2+ (L = bpy, bpm, and bpz) complexes, [Ru(bpm)3]2+ shows enhanced hyperpolarizability due to increase in the dipole along the X-direction. In derivative Ru2+ complexes, we found that hyperpolarizability depends on electron-donating capability of the substituent. As per FMOs study, the HOMO is predominantly metal fragment based, the LUMO is primarily ligand based, and the larger value of hyperpolarizability corresponds to the lower ELUMO–EHOMO gap, reflecting that nonlinear optical response is a consequence of additive dipolar responses of charge transfer and hyperpolarizability.  相似文献   

20.
New mixed polypyridyl {HPIP = 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline, phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, dmb = 4,4-dimethyl-2,2-bipyridine} ruthenium(II) complexes [Ru(phen)2(HPIP)]2+, [Ru(dmp)2(HPIP)]2+ and [Ru(dmb)2(HPIP)]2+ were synthesized and characterized by elemental analyses 1H-n.m.r., u.v.–vis. spectroscopy and cyclic voltammetry. Their DNA-binding properties were demonstrated by absorption, luminescence titrations, steady-state emission quenching and viscosity measurements. The results suggested that all the examined complexes bind with CT-DNA intercalatively. Methyl groups substituted at the 4,4-positions of bpy has no obvious effect on its DNA binding, whereas substituents at the 2- and 9-positions of phen have an impressive effect on its DNA-binding, as revealed by the decreased binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号