首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 6 毫秒
1.
Non healing chronic wounds are difficult to treat in patients with diabetes and can result in severe medical problems for these patients and for society. Negative-pressure wound therapy (NPWT) has been adopted to treat intractable chronic wounds and has been reported to be effective. However, the mechanisms underlying the effects of this treatment have not been elucidated. To assess the vasculogenic effect of NPWT, we evaluated the systemic mobilization of endothelial progenitor cells (EPCs) during NPWT. Twenty-two of 29 consecutive patients who presented at the clinic of Seoul National Universty Hospital between December 2009 and November 2010 who underwent NPWT for diabetic foot infections or skin ulcers were included in this study. Peripheral blood samples were taken before NPWT (pre-NPWT) and 7–14 days after the initiation of NPWT (during-NPWT). Fluorescence-activated cell sorting (FACS) analysis showed that the number of cells in EPC-enriched fractions increased after NPWT, and the numbers of EPC colony forming units (CFUs) significantly increased during NPWT. We believe that NPWT is useful for treating patients with diabetic foot infections and skin ulcers, especially when these conditions are accompanied by peripheral arterial insufficiency. The systemic mobilization of EPCs during NPWT may be a mechanism for healing intractable wounds in diabetic patients with foot infections or skin defects via the formation of increased granulation tissue with numerous small blood vessels.  相似文献   

2.
IntroductionFormulating new wound-healing ointments by natural compounds is the first research priority in the developing and developed countries. This study was intended to provide green formulation of Ag-NP ointment containing Citrus lemon leaf aqueous extract and examine its capability of healing cutaneous wounds and its antioxidant and cytotoxicity activities under in vitro and in vivo conditions.Materials and methodsDifferent techniques, including UV–Vis and FT-IR spectroscopy, were used to characterize Ag-NPs. MTT assay was used to investigate cytotoxicity property of Ag-NPs. Antioxidant activity of Ag-NPs were examined by DPPH in the presence of butylated hydroxytoluene as positive control. Parameters of cutaneous wound healing were measured both histopathologically and biochemically.ResultsClear peak at 429 nm shown by UV–Vis spectroscopy indicated formation of Ag-NPs. In FT-IR spectroscopy, presence of many antioxidant compounds provided an excellent condition to reduce silver in Ag-NPs. FE-SEM and TEM images showed spherical Ag-NPs with an average size of 25.1 nm. The synthesized silver nanoparticles had excellent cell viability on the HUVECs line and indicated this method was nontoxic. Application of Ag-NP ointment improved wound healing parameters significantly (P ≤ 0.01). Ag-NPs reduced wound areas, total cells, neutrophils and lymphocytes significantly (P ≤ 0.01) and increased wound contracture, vessels, hexosamines, hydroxyl proline, hexuronic acid, fibrocytes, fibroblasts and fibrocyte/ fibroblast ratios significantly (P ≤ 0.01).ConclusionsOnce our results are verified by clinically experimental studies, Ag-NP ointment can be used as a modern one to treat several types of wounds, especially cutaneous ones, in humans.  相似文献   

3.
Full-thickness cutaneous trauma, due to the lack of dermis, leads to difficulty in epithelialization by keratinocytes, developing a fibrotic scar, with less elasticity than the original skin, which may have disorders in predisposed individuals, resulting in hypertrophic scar and keloids. Biomedical materials have excellent characteristics, such as good biocompatibility and low immunogenicity, which can temporarily replace traditional materials used as primary dressings. In this work, we developed two dermal matrices based on Nile tilapia collagen, with (M_GAG) and without (M) glycosaminoglycans, using a sugarcane polymer membrane as a matrix support. To assess the molecular mechanisms driving wound healing, we performed qualitative proteomic analysis on the wound bed in an in vivo study involving immunocompetent murine models at 14 and 21 days post-full-thickness skin injury. Gene Ontology and Pathway analysis revealed that both skins were markedly represented by modulation of the immune system, emphasizing controlling the acute inflammation response at 14 and 21 days post-injury. Furthermore, both groups showed significant enrichment of pathways related to RNA and protein metabolism, suggesting an increase in protein synthesis required for tissue repair and proper wound closure. Other pathways, such as keratinization and vitamin D3 metabolism, were also enriched in the groups treated with M matrix. Finally, both matrices improved wound healing in a full post-thick skin lesion. However, our preliminary molecular data reveals that the collagen-mediated healing matrix lacking glycosaminoglycan (M) exhibited a phenotype more favorable to tissue repair, making it more suitable for use before skin grafts.  相似文献   

4.
This study evaluated the wound healing effects of topical application of an emulsion containing the HPLC-standardised extract from Calophyllum brasiliense Cambess (Clusiaceae) leaves in rats. The macroscopic analysis demonstrated that the wounds treated with the C. brasiliense emulsion healed earlier than the wounds treated with emulsion base and Dersani®. The percentage of wound healing in the group treated with the C. brasiliense emulsion was significantly higher than in the other groups at 7 and 14 days. On day 14, the animals treated with the C. brasiliense emulsion exhibited a 90.67% reduction of the wound areas. The histological evaluation revealed that on day 21, the group treated with the C. brasiliense emulsion exhibited a significant increase in fibroblasts compared with the other groups. Thus, the C. brasiliense emulsion had healing properties in the topical treatment of wounds and accelerated the healing process.  相似文献   

5.
Macrophages play a prominent role in wound healing. In the early stages, they promote inflammation and remove pathogens, wound debris, and cells that have apoptosed. Later in the repair process, they dampen inflammation and secrete factors that regulate the proliferation, differentiation, and migration of keratinocytes, fibroblasts, and endothelial cells, leading to neovascularisation and wound closure. The macrophages that coordinate this repair process are complex: they originate from different sources and have distinct phenotypes with diverse functions that act at various times in the repair process. Macrophages in individuals with diabetes are altered, displaying hyperresponsiveness to inflammatory stimulants and increased secretion of pro-inflammatory cytokines. They also have a reduced ability to phagocytose pathogens and efferocytose cells that have undergone apoptosis. This leads to a reduced capacity to remove pathogens and, as efferocytosis is a trigger for their phenotypic switch, it reduces the number of M2 reparative macrophages in the wound. This can lead to diabetic foot ulcers (DFUs) forming and contributes to their increased risk of not healing and becoming infected, and potentially, amputation. Understanding macrophage dysregulation in DFUs and how these cells might be altered, along with the associated inflammation, will ultimately allow for better therapies that might complement current treatment and increase DFU’s healing rates.  相似文献   

6.
Determination of the broad-spectrum antibiotics amoxicilline (AMX) and ceftazidime (CTZ) in blood serum and microdialysates of the subcutaneous tissue of the lower limbs is performed using CE with contactless conductivity detection (C4D). Baseline separation of AMX is achieved in 0.5 M acetic acid as the background electrolyte and separation of CTZ in 3.2 M acetic acid with addition of 13% v/v methanol. The CE-C4D determination is performed in a 25 µm capillary with suppression of the EOF using INST-coating on an effective length of 18 cm and the attained migration time is 4.2 min for AMX and 4.4 min for CTZ. The analysis was performed using 20 µl of serum and 15 µl of microdialysate, treated by the addition of acetonitrile in a ratio of 1/3 v/v and the sample is injected into the capillary using the large volume sample stacking technique. The LOQ attained in the microdialysate is 148 ng/ml for AMX and 339 ng/ml for CTZ, and in serum 143 ng/ml for AMX and 318 ng/ml for CTZ. The CE-C4D method is employed for monitoring the passage of AMX and CTZ from the blood circulatory system into the subcutaneous tissue at the sites of diabetic ulceration in patients suffering from diabetic foot syndrome and also for measuring the pharmacokinetics following intravenous application of bolus antibiotic doses.  相似文献   

7.
Platelet-rich plasma (PRP) contains growth factors that promote tissue regeneration. Previously, we showed that heparin-conjugated fibrin (HCF) exerts the sustained release of growth factors with affinity for heparin. Here, we hypothesize that treatment of skin wound with a mixture of PRP and HCF exerts sustained release of several growth factors contained in PRP and promotes skin wound healing. The release of fibroblast growth factor 2, platelet-derived growth factor-BB, and vascular endothelial growth factor contained in PRP from HCF was sustained for a longer period than those from PRP, calcium-activated PRP (C-PRP), or a mixture of fibrin and PRP (F-PRP). Treatment of full-thickness skin wounds in mice with HCF-PRP resulted in much faster wound closure as well as dermal and epidermal regeneration at day 12 compared to treatment with either C-PRP or F-PRP. Enhanced skin regeneration observed in HCF-PRP group may have been at least partially due to enhanced angiogenesis in the wound beds. Therefore, this method could be useful for skin wound treatment.  相似文献   

8.
The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology because it does not involve any harmful chemicals. The aim of the experiment was chemical characterization and evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing activities of gold nanoparticles using aqueous extract of Gundelia tournefortii L. leaves (AuNPs@GT). These nanoparticles were characterized by fourier transformed infrared spectroscopy (FT‐IR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDS), and UV–visible spectroscopy. DPPH free radical scavenging test was done to assess the antioxidant properties, which indicated similar antioxidant potentials for AuNPs@GT and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial and antifungal characteristics. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) were specified by macro‐broth dilution assay. AuNPs@GT indicated higher antibacterial and antifungal effects than all standard antibiotics (p ≤ 0.01). Also, AuNPs@GT inhibited the growth of all bacteria and fungi and removed them at 2‐4 mg/mL concentrations (p ≤ 0.01). In vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control, treatment with Eucerin basal ointment, treatment with 3% tetracycline ointment, treatment with 0.2% HAuCl4 ointment, treatment with 0.2% G. tournefortii ointment, and treatment with 0.2% AuNPs@GT ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3 cm section was prepared from all dermal thicknesses at day 10. Use of AuNPs@GT ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, fibroblast, and fibrocytes/fibroblast rate compared to other groups. The synthesized AuNPs@GT had great cell viability dose‐dependently (Investigating the effect of the plant on HUVEC cell line) and revealed this method was nontoxic. The results showed that the leave aqueous extract of G. tournefortii is very good bioreductant in the synthesis of gold nanoparticles for treatment of bacterial, fungal, and skin diseases.  相似文献   

9.
《Arabian Journal of Chemistry》2020,13(12):8909-8919
Ghee is a dairy product widely consumed in India, north-Africa, and Middle East countries, having beneficial pharmacological effects. This study aims to characterize the effects of aromatic plants addition (rosemary and clove) on the nutritional, volatile and oxidative profile of cow ghee and to evaluate the effect of flavored ghee on the fibroblasts migration during wound healing in vitro assay. Two flavored ghee products were obtained by adding clove (CG) and rosemary (RG) as aromatic plants through maceration in cattle traditional ghee (BT). It was revealed that enriched ghee samples had significantly lower peroxide values (6.76 and 6.80 meqO2 /kg) compared to control samples (8.20 meqO2 /kg). Moreover, the addition of rosemary and clove change the volatile profile, and increased the retinol levels of ghee (BT: 1.3 mg/kg; CG: 1.9 mg/kg; and RG: 3.05 mg/kg). Liquid-chromatography analyses revealed the presence of targeted phenolic compounds such as carnosic acid, rutin and gallic acid in CG and RG, showing thus, the transfer of polyphenols from aromatic plants into the ghee matrix. On the other hand, the fatty acid composition of ghee remained unchanged. The major components of the prepared ghee samples contributed to rising significantly the human fibroblast migration in wound healing in vitro assay. The results obtained underline that the flavored ghee samples could improve skin regeneration, making them potentials therapeutic ingredients in skincare formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号