首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new six-coordinate organotin(IV)-phosphoric triamide complex of OP[NC5H10]3 = OP was synthesized ([Cl2Sn(CH3)2(OP)2], 1) and characterized by X-ray crystallography and spectroscopic methods (FT-IR, UV–Vis, and 1H/13C/31P-NMR). The crystal structures of 1 and the analogous previously reported five-coordinate complex [Cl2Sn(CH3)2(OP)] (IZOVIE) were compared on a structural level and by computational means using Hirshfeld surface analysis, density functional theory calculations and the atom in molecule method. The investigation of intermolecular interactions in the crystal structures of the two complexes by the Hirshfeld surface method indicates that in the absence of normal hydrogen bonds, the chlorine-based interactions H?Cl/Cl?H (for 1 and IZOVIE) and Cl?Sn/Sn?Cl (for IZOVIE) play a determinant role in the molecular assemblies. However, the prominent contacts are of H?H type. From calculated electronic parameters such as bond order, Mulliken charge and electron delocalization energy, it was found that the Sn-OP contact has a lower strength in IZOVIE than in 1, suggesting more ionic character of the metal-oxygen contact in five-coordinate complex IZOVIE. Furthermore, we discuss the similarities and differences of the two complexes 1 and IZOVIE derived from the same ligand OP by density functional theory calculations to present an insight into the organotin(IV)-phosphoric triamide coordination chemistry affected by different geometries and coordination numbers.  相似文献   

2.
Abstract

Molecular and supramolecular structures of two new Mn(II) complexes with tridentate N,N,N-pincer type ligand (L) are presented. [MnL(H2O)2Cl]Cl (1) and [MnL(H2O)3](NO3)2·H2O (2) have octahedral coordination environments with different degrees of distortion. The molecular packing of 1 and 2 is dominated by strong O–H?Cl and O–H?O H-bonds, respectively, as well as weak C–H?O interactions. The percentage of Cl?H and O?H contacts are 15.5 and 31.5% for 1 and 2, respectively, using Hirshfeld analysis. Based on atoms in molecules theory, the Mn–N, Mn–O, and Mn–Cl bonds have the characteristics of closed shell interactions. Thermal decomposition of L and its Mn(II) complexes are also presented.  相似文献   

3.
The supramolecular assemblies of three new phosphoric triamides, {(C6H5CH2)(CH3)N}2(4-CH3-C6H4C(O)NH)P(O) (1), {(C6H11)(CH3)N}2(4-CH3-C6H4C(O)NH)P(O) (2) and {(C2H5)2N}2(4-CH3-C6H4C(O)NH)P(O) (3) were studied by single crystal X-ray diffraction as well as by Hirshfeld surface analysis. It was found that a synergistic cooperation of NH?O and CH?O hydrogen bonds occurs in all three structures, but forming unique supramolecular architectures individually. Along with the presence of centrosymmetric dimers in 1, 2 and 3, based on a classical NH?O hydrogen bond, the presence of weak CH?O interactions play an additional and vital role in crystal architecture and construction of the final assemblies, collectively identified as a centrosymmetric dimer (0D), a 1-D array and a 3-D network, respectively. These differences in superstructures are related to the effect of aromatic, bulk and flexible groups used in the molecules designed, with a similar C(O)NHP(O) backbone. The NH?O contacts in 1, 2 and 3 are of the “resonance-assisted hydrogen bond” types and also the anti-cooperativity effect can be considered in the multi-acceptor sites P═O in 1 and 2 and C═O in 3. All three compounds were further studied by 1D NMR experiments, 2D NMR techniques (HMQC and HMBC (H–C correlation)), high resolution ESI–MS, EI–MS spectrometry and IR spectroscopy methods.  相似文献   

4.
The two single‐enantiomer phosphoric triamides N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(S)‐(−)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(S)‐(−)‐(C6H5)CH(CH3)NH]2P(O), denoted L‐1 , and N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(R)‐(+)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(R)‐(+)‐(C6H5)CH(CH3)NH]2P(O), denoted D‐1 , both C23H24F2N3O2P, have been investigated. In their structures, chiral one‐dimensional hydrogen‐bonded architectures are formed along [100], mediated by relatively strong N—H…O(P) and N—H…O(C) hydrogen bonds. Both assemblies include the noncentrosymmetric graph‐set motifs R22(10), R21(6) and C22(8), and the compounds crystallize in the chiral space group P1. Due to the data collection of L‐1 at 120 K and of D‐1 at 95 K, the unit‐cell dimensions and volume show a slight difference; the contraction in the volume of D‐1 with respect to that in L‐1 is about 0.3%. The asymmetric units of both structures consist of two independent phosphoric triamide molecules, with the main difference being seen in one of the torsion angles in the OPNHCH(CH3)(C6H5) part. The Hirshfeld surface maps of these levo and dextro isomers are very similar; however, they are near mirror images of each other. For both structures, the full fingerprint plot of each symmetry‐independent molecule shows an almost asymmetric shape as a result of its different environment in the crystal packing. It is notable that NMR spectroscopy could distinguish between compounds L‐1 and D‐1 that have different relative stereocentres; however, the differences in chemical shifts between them were found to be about 0.02 to 0.001 ppm under calibrated temperature conditions. In each molecule, the two chiral parts are also different in NMR media, in which chemical shifts and P–H and P–C couplings have been studied.  相似文献   

5.
In the present work, the two‐dimensional (2D) polymer poly[[μ4‐2‐(4‐nitrobenzenesulfonamido)benzoato‐κ4O1:O1:O1′:N6]silver(I)] (AgL), [Ag(C13H9N2O6S)]n, was obtained from 2‐(4‐nitrobenzenesulfonamido)benzoic acid (HL), C13H10N2O6S. FT–IR, 1H and 13C{1H} NMR spectroscopic analyses were used to characterize both compounds. The crystal structures of HL and AgL were determined by single‐crystal X‐ray diffraction. In the structure of HL, O—H…O hydrogen bonds between neighbouring molecules result in the formation of dimers, while the silver(I) complex shows polymerization associated with the O atoms of three distinct deprotonated ligands (L?). Thus, the structure of the Ag complex can be considered as a coordination polymer consisting of a one‐dimensional linear chain, constructed by carboxylate bridging groups, running parallel to the b axis. Neighbouring polymeric chains are further bridged by Ag—C monohapto contacts, resulting in a 2D framework. Fingerprint analysis of the Hirshfeld surfaces show that O…H/H…O hydrogen bonds are responsible for the most significant contacts in the crystal packing of HL and AgL, followed by the H…H and O…C/C…O interactions. The Ag…Ag, Ag…O/O…Ag and Ag…C/C…Ag interactions in the Hirshfeld surface represent 12.1% of the total interactions in the crystal packing. Studies of the interactions of the compounds with human serum albumin (HSA) indicated that both HL and AgL interact with HSA.  相似文献   

6.
Two ternary copper(II) complexes [Cu(L1)(py)] (1) and [Cu(L2)(Himdz]?·?CH3OH (2) with substituted aroylhydrazones, 5-bromo-salicylaldehyde-3,5-dimethoxy-benzoylhydrazone (H2L1) and 5-bromo-salicylaldehyde-p-methyl-benzoylhydrazone (H2L2), pyridine (py) and imidazole (Himdz), have been synthesized. Their crystal structures and spectroscopic properties have been studied. In each complex, the metal is in a square-planar N2O2 coordination formed by the phenolate-O, the imine-N and the deprotonated amide-O atoms of L2?, and the sp2?N atom of the neutral heterocycle. In the solid state, 1 exists as a centrosymmetric dimer due to very weak apical coordination of the metal bound phenolate-O. Complex 2 has no such apical coordination and exists as a monomer. Self-assembly via C–H?···?O, N–H?···?O and O–H?···?N interaction leads to a one-dimensional chain arrangement; other non-covalent interactions such as C–H?···?π and π?···?π are not involved.  相似文献   

7.
Hirshfeld surfaces and two‐dimensional fingerprint plots are used to analyse the intermolecular interactions in two new phosphorothioic triamide structures, namely N,N′,N′′‐tris(3,4‐dimethylphenyl)phosphorothioic triamide acetonitrile hemisolvate, P(S)[NHC6H3‐3,4‐(CH3)2]3·0.5CH3CN or C24H30N3PS·0.5CH3CN, (I), and N,N′,N′′‐tris(4‐methylphenyl)phosphorothioic triamide–3‐methylpiperidinium chloride (1/1), P(S)[NHC6H4(4‐CH3)]3·[3‐CH3‐C5H9NH2]+·Cl or C21H24N3PS·C6H14N+·Cl, (II). The asymmetric unit of (I) consists of two independent phosphorothioic triamide molecules and one acetonitrile solvent molecule, whereas for (II), the asymmetric unit is composed of three components (molecule, cation and anion). In the structure of (I), the different components are organized into a six‐molecule aggregate through N—H...S and N—H...N hydrogen bonds. The components of (II) are aggregated into a two‐dimensional array through N—H...S and N—H...Cl hydrogen bonds. Moreover, interesting features of packing arise in this structure due to the presence of a double hydrogen‐bond acceptor (the S atom of the phosphorothioic triamide molecule) and of a double hydrogen‐bond donor (the N—H unit of the cation). For both (I) and (II), the full fingerprint plot of each component is asymmetric as a consequence of the presence of three fragments. These analyses reveal that H...H interactions [67.7 and 64.3% for the two symmetry‐independent phosphorothioic triamide molecules of (I), 30.7% for the acetonitrile solvent of (I), 63.8% in the phosphorothioic triamide molecule of (II) and 62.9% in the 3‐methylpiperidinium cation of (II)] outnumber the other contacts for all the components in both structures, except for the chloride anion of (II), which only receives the Cl...H contact. The phosphorothioic triamide molecules of both structures include unsaturated C atoms, thus presenting C...H/H...C interactions: 17.6 and 21% for the two symmetry‐independent phosphorothioic triamide molecules in (I), and 22.7% for the phosphorothioic triamide molecule of (II). Furthermore, the N—H...S hydrogen bonds in both (I) and (II), and the N—H...Cl hydrogen bonds in (II), are the most prominent interactions, appearing as large red spots on the Hirshfeld surface maps. The N...H/H...N contacts in structure (I) are considerable, whereas for (II), they give a negligible contribution to the total interactions in the system.  相似文献   

8.
Dinuclear tin(IV) dicarboxylate complexes of the types [(n-Bu)2Sn(oda)(4-pic)]2·2H2O (1) and [(n-Bu)2Sn(pda)(H2O)]2 (2) [H2oda = oxydiacetic acid; H2pda = pyridine 2,6-dicarboxylic acid) were synthesized and characterized via physicochemical and spectroscopic studies. The spectroscopic results indicated that Sn is seven-coordinate having pentagonal bipyramidal (pbp) geometry in both complexes. The X-ray study of complex 2 further specified pentagonal bipyramidal geometry with dinuclear structural arrangement due to the involvement of carboxylate bridges formed by pda2? moiety. The crystal structure is further stabilized by different weak interactions viz., C–C?H, C–C?O, C–H?O, C–C?O, and C–H?H. These interactions are further supported by Hirshfeld surface analysis along with 2-D fingerprint plots of complex 2. In vitro DNA-binding studies of both complexes were evaluated using spectroscopic techniques (absorbance and fluorescence) which ascertained optimum binding affinity of both complexes. However, cleavage activity of the complexes was assessed using supercoiled DNA (pBR322) via gel electrophoresis technique which demonstrated significant cleavage pattern of both complexes at different concentrations. Furthermore, chemotherapeutic potential of complexes 1 and 2 against MCF-7 and Hep carcinoma cell lines also suggested significant antiproliferative effect of complexes. These results revealed momentous exploration of drug–DNA interactions which may engender new insinuation for the advancement of metallo-pharmaceuticals.  相似文献   

9.
Different molecular assemblies were compared in two new structures [4-CH3-C6H4C(O)NH]P(O)[NH]2(CH2)3, 1, and [4-CH3-C6H4C(O)NH]P(O)[NHC6H3(3,4-CH3)2]2, 2, belonging to the families of “cyclic phosphoric triamide” and “phosphoric triamide”, respectively. The differences in the hydrogen bond motifs were discussed (by single crystal X-ray diffraction) as a result of three factors: (1) action of two N atoms with a non-planar environment in 1 as an H-bond acceptor, (2) different orientations of three N–H bond vectors in two molecules and (3) different conformations of C=O and P=O groups. These differences lead to more complicated hydrogen bond pattern of 1, with respect to that of 2, as structure 1 may be considered as a model of four-acceptor–three-donor versus a two-acceptor–three-donor system in 2. The main discrepancies of 1 and 2, monitored by the Hirshfeld surface analysis, are related to the contribution portions of O···H/H···O contacts, in which compound 1 not only involves the greater existence of classical hydrogen bonds but also contains the further C–H···O weak interactions in its crystal packing with respect to compound 2. Instead, in 2, the shortage of O···H/H···O contacts has been partially compensated by the C···H/H···C interactions, due to the presence of more unsaturated carbon acceptors. The differences in assemblies are also reflected in the solid-state IR spectra, especially for the N–H vibration frequencies. The new compounds were further studied by 1D NMR experiments (1H, 13C, 31P), 2D NMR techniques [HMQC and HMBC (H–C correlation), HSQC (N–H correlation)], high-resolution ESI–MS, EI–MS spectrometry and IR spectroscopy.  相似文献   

10.
A series of second-sphere coordination complexes of tribenzylamine (L 1 ) and [MCl6] (M = Sn, Re, Te) have been synthesized and characterized by spectroscopic techniques (IR, NMR) and single-crystal X-ray diffraction. The main driving force for the encapsulation of [MCl6] and recognition with L 1 is the second-sphere coordination of metal halides by the amide protons of the ligand via hydrogen bonding (N–H ··· Cl–M and C–H ··· Cl–M); new layered structures are described. Thermal stability and irreversible behavior of second-sphere coordination complexes [L 2 ] · 0.5[TeCl6]2? · HCl · (H3O)+ · 0.5H2O (L 2 = N,N,N′,N′-tetrabenzyl-ethylenediamine) in contact with water vapor are also described.  相似文献   

11.
Two new ZnII complexes, {[Zn(L)(phen)(H2O)]?·?H2O} (1) and {[Zn(L)(4bpy)(H2O)]?·?H2O} (2) (L?=?5,6-dihydro-1,4-dithiin-2,3-dicarboxylate, phen?=?1,10-phenanthroline, and 4bpy?=?4,4′-bipyridine), have been prepared by in situ reaction of Zn(ClO4)2?·?6H2O with 5,6-dihydro-1,4-dithiin-2,3-dicarboxylic anhydrate in the presence of lithium hydroxide, together with incorporating chelating phen or bridging 4bpy as co-ligands. Their structures were determined by single-crystal X-ray diffraction. Complex 1 takes a 1-D helical structure that is further assembled into a 2-D network by O–H?···?O, C–H?···?O hydrogen bonds, and weak S?···?S interactions, and then an overall 3-D supramolecular framework was formed by π?···?π stacking interactions. Complex 2 possesses a 2-D (4,4)-layered structure. The structural difference between 1 and 2 can be attributed to the different N-donor auxiliary co-ligands. Both 1 and 2 are photoluminescent materials whose emission properties are closely related to their intrinsic structure.  相似文献   

12.
在不同反应条件下反应得到了两种1,2,3-三唑衍生物的配合物[Co(H2O)6][Co(L13]2·4H2O(1)和Cu(L222)(HL1=5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid;HL2=1-(4-iodophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid)。通过X射线单晶衍射和红外光谱确定了晶体结构,同时对配合物12进行了表面作用分析(Hirshfeld surface analysis),在二维指纹图谱中可以清楚的看到配合物中的主要分子间作用。  相似文献   

13.
A cobalt(III) complex [Co(L)2]Cl · PPO · H2O (1) (HL = 1-(2-aminobenzylimino)-1-phenyl-propan-2-one oxime, PPO = 1-phenyl-1,2-propanedione-2-oxime) has been synthesized and characterized by elemental analyses, spectral, thermal, magnetic and molar conductance measurements and single crystal X-ray diffraction. It crystallizes in the monoclinic crystal system, space group P21/c. Complex 1 consists of one uncoordinated water, one 1-phenyl-1,2-propanedione-2-oxime molecule, one bis[1-(2-aminobenzylimino)-1-phenyl-propan-2-one oxime]cobalt(III) cation and one uncoordinated chloride. The coordination geometry around Co is slightly distorted octahedral, completed with six nitrogens of two L? ligands. The oxime moieties have E configurations. In the crystal structure, intramolecular O–H···Cl and N–H···O and intermolecular N–H···O, O–H···Cl and N–H···Cl hydrogen bonds link the molecules into chains parallel to the c axis; hydrogen-bonded PPO molecules fill the spaces between the chains and stabilization of the structure.  相似文献   

14.
Two fluorinated gallium phosphates templated by organic amines, (C4H15N3)[Ga3F2(PO4)3] (1) and [(C2H10N2)(C2H9N2)][Ga3F4(HPO4)4] (2), have been synthesized under hydrothermal and solvothermal conditions, respectively. The compounds were characterized by elemental analyses, FT-IR spectroscopy, and powder X-ray diffraction. Their crystal structures were determined from single-crystal X-ray diffraction. The crystal structure of 1 has a 3-D framework with 10-membered ring channels along the b-axis. The crystal structure of 2 is an infinite 1-D chain structure, further forming a 3-D supramolecular structure with pseudo 10-membered ring channels along the a-axis through O–H?···?O hydrogen bonds. The protonated organic amine cations are located in the inorganic channel and interact with the polyanion framework both electrostatically and via N–H?···?O and N–H?···?F hydrogen bonds.  相似文献   

15.
Three supramolecular complexes [Zn(HL1 )2(H2O)2(ZnCl4)2] (1), [Cu(L2 )2Cl2] (2), and [Zn(L3 )Cl2] (3) have been synthesized and characterized by single crystal X-ray diffraction analysis (L1 = 3,5-di(2-pyridyl)-4-amino-1,2,4-triazole, L2 = 3,5-di(2-pyridyl)-1,2,4-triazole, and L3 = 2-pyridinecarboxylic acid (pyridin-2-ylmethylene)-hydrazide). In 1, anion–π interactions between Cl? and the π-systems of L1 are observed and anion–π, hydrogen bonding and π–π stacking interactions link the two complex units of [Zn(HL1 )2(H2O)2]4+ and [ZnCl4]2? to form a 3-D supramolecular network. In 2, π–π stacking interactions between aromatic rings of 1,2,4-triazole and pyridine rings are observed; in 3, hydrogen bonding of Cl ··· H–N and π–π stacking interactions between parallel pyridine rings of L 3 are observed. The mechanisms of rearrangement reactions of L to L1 L3 are discussed. The fluorescent properties for solid 1 and 3 are also investigated.  相似文献   

16.
Abstract

Two new uranyl coordination compounds, [C9H17N2]3[(UO2)2(CrO4)2Cl2(H2O)2]Cl·5H2O (1) and (C9H17N2)[(UO2)(C2O4)Cl] (2), have been synthesized by adding potassium dichromate (K2Cr2O7) or oxalic acid dihydrate (H2C2O4·2H2O) solution into an aqueous solution of uranyl nitrate and 1-butyl-2,3-dimethylimidazolium chloride [Bmmim]Cl. [Bmmim]Cl provides the charge balance and Cl ions that coordinate with uranyl ions. The fundamental building units of 1 and 2 are UO6Cl pentagonal bipyramidal structures. Compound 1 exhibits a graphene-like structure with a system molar ratio of 1:1 for U:Cr and crystallizes in the orthorhombic space group Pbca, with a = 25.644(3) Å, b = 12.996(14) Å and c = 29.198(4) Å. 16-Membered rings are formed by CrO42? and UO22+ in the crystal structure of 1. Compound 2 crystallizes in monoclinic space group P21/n, with a = 10.759(3) Å, b = 11.395(3) Å, c = 14.149(4) Å, β = 102.962(9)° and shows one-dimensional (1D) serrated chains. Within the crystal structures of 1 and 2, C–H[Bmmim]Cl?O hydrogen bonds are identified. O–Hwater?Cl hydrogen bonds are also detected in the crystal structure for 1.  相似文献   

17.
Synthesis of two new asymmetric ligands: 1-(2-ethoxyphenyl)-3-(2-methoxycarbonylphenyl)triazene (HL) (1) and 1-(2-methoxyphenyl)-3-(2-methoxycarbonylphenyl)triazene (HL′) (2) are reported. The prepared triazenes are functionalized by ethoxy and methoxy groups in the ortho positions, respectively. The related monomeric complexes, [HgL2] (3) and [HgL′2] (4), were prepared by the reacting of the corresponding ligands with Hg(NO3)2 salt in methanol as solvent. All compounds were characterized by CHN analysis, FT-IR, 1H NMR, and 13C NMR spectroscopy. According to the crystal structures of 1 and 2, the N–N bond distances indicate the presence of alternating single and double bonds, and hence the –N=N–NH– moiety. On coordination, each triazene was deprotonated and as a result, a resonance structure is formed between nitrogens which let them to be a tridentate ligand. In the crystal structure of 3, [HgL2], the central Hg(II) is surrounded by two N atoms from interlocked L forming linear geometry, in which the other four Hg–N and Hg–O bonds are longer and can only be regarded as weak secondary bonds. An interesting feature of 3 is also the presence of π?π [centroid–centroid distance of 3.744(3)?Å] and C–H?π interactions. The results of solution studies for the formation of 3 in methanol support its solid-state stoichiometry.  相似文献   

18.
Two new CdII complexes, [Cd(L)2(CH3OH)2] (1) and [Cd(L)2(pyz)(H2O)] (2), have been prepared by the reaction of xanthene-9-carboxylic acid (HL) and Cd(ClO4)2·6H2O in the presence or absence of pyz co-ligand (L?=?xanthene-9-carboxylate and pyz?=?pyrazine). Their structures were determined by single-crystal X-ray diffraction. Complex 1 possesses a 1-D zigzag chain structure, whereas 2 has a 1-D linear chain that is further assembled into a 2-D network, and then an overall 3-D framework by inter-chain O–H?···?O hydrogen bonds and C–H?···?π supramolecular interactions. Both 1 and 2 are photoluminescent and their emission properties are closely related to their intrinsic structures.  相似文献   

19.
Bichelated neutral palladacycles (1–3), [Pd(L)Cl], were synthesized from reaction of the new potential tridentate (C,N,S) ligands, 2-thiobenzylazobenzene (L1), 4′-methyl-2-thiobenzylazobenzene (L2), and 4′-chloro-2-thiobenzylazobenzene (L3) with sodium tetrachloropalladate(II), Na2[PdCl4], in ethanol. The compounds were characterized by elemental analysis, FT-IR, 1H NMR, UV–visible, and thermogravimetric analysis. The crystal structures of L2 and 1–3 were determined by single-crystal X-ray diffraction. In 1–3, the geometry around palladium remains almost square planar, coordinated to carbon, nitrogen, and sulfur of the ligand forming a bichelated cyclopalladate complex. The C–H…Cl type intermolecular hydrogen bonds, weak ππ, C–H…π, and van der Waals interactions are believed to be the stabilizing forces for the crystal packing of these palladacycles.  相似文献   

20.
Three calcium coordination compounds, [Ca(CPA)(H2O)4]·(CPA), 1, [Ca(MCPA)2(H2O)2]·H2O, 2, and [Ca(TCPA)2(H2O)3]·2H2O, 3 [HCPA = 3-chlorophenoxyacetic acid, HMCPA = 2-methyl-4-chlorophenoxyacetic acid, and HTCPA = 2,4,6-trichlorophenoxyacetic acid], have been synthesized by the microwave method with advantages that include shorter reaction times, lower energy consumption, and higher product yield. The structures have been characterized by IR, elemental analysis, and single-crystal X-ray diffraction. Influences on the crystal structures by changing the number and position of chlorine substituent group in phenoxyacetic acid are discussed. Steric hindrance effects involving the Cl and an ability to form the O–H?Cl hydrogen bonds enrich the structure diversity. TG analysis reveals that the thermostability for the three compounds is 3 > 1 > 2, which could be influenced by the existence of hydrogen bonds (O–H?Cl and O–H?O).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号