首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transmittance of polyethylenimine (PEI)/cinnamic acid (CA) aqueous mixture was close to zero at 20–40°C, and it began to increase around 40°C due to the disassembling of the self-assembly of the PEI/CA conjugate. As the concentration of sodium dodecyl sulfate (SDS) increased, the increasing rate of the transmittance decreased and the onset temperature increased, indicating that the self-assembly of the PEI/CA conjugate became more stable against heat with the aid of SDS. Tween 20 could also suppress the thermally induced disassembling of the self-assembly, possibly because poly(ethylene oxide) chains of the surfactant could be entangled with the PEI chains. Dodecyltrimethyl ammonium bromide (DTAB) did not have an effect on the temperature-dependent self-assembling phenomena as much as SDS and Tween 20 did. The interfacial tension of the PEI/CA/SDS aqueous mixture and that of the PEI/CA/Tween 20 aqueous mixture at 70°C were lower than the respective tensions observed at 25°C. On the contrary, the interfacial tension of the PEI/CA/DTAB aqueous mixture at 70°C was higher than that observed at 25°C, possibly because the PEI/CA conjugate could lose its surface activity at the higher temperature due to the adsorption of DTAB on CA molecules.  相似文献   

2.
Monoolein (MO) cubic phase including alginate and cystamine in its water channel controlled the release of epidermal growth factor (EGF) by responding to changes in pH value and the reductive conditions of the release medium. The crosslinking degree of alginate gel with cystamine and the complex coacervation of alginate and EGF were investigated by using light scattering. TEM micrographs of cubic phases revealed MO bilayers along with water channels. Differential scanning calorimetry indicated that the cubic-to-hexagonal phase transition took place at 60.2?°C. Additives such as stearyl trimethyl ammonium chloride and cystamine decreased the transition temperature by a few to more than 10?°C. The release of EGF loaded in cubic phases was completed in 5?h and, thereafter, no significant additional release was observed. The release % of EGF loaded in MO cubic phase containing alginate and cystamine increased not only with the increase of pH but also glutathione concentration. The MO cubic phase containing alginate/cystamine gel can be used as a carrier for the delivery of peptide and protein drugs.  相似文献   

3.
Thermo- and UV photo-triggerable monoolein (MO) cubic phases were developed by incorporating poly(hydroxyethyl acrylate-co-coumaryl acrylate-co-octadecyl acrylate) (P(HEA-CA-ODA)) in the cubic phases. P(HEA-CA-ODA)s, for which the HEA/CA/ODA molar ratio was 98.6:0:1.4, 96.7:2.0:1.3, 96.2:2.6:1.2, 95:3.8:1.2, and 92.8:6.1:1.1, calculated on the 1H NMR spectra, were prepared by a free radical reaction. The air–water interfacial tension was inversely proportional to the CA content of the copolymer. The copolymers for which the CA content was 2.6%, 3.8%, and 6.1% exhibited their phase transition temperature in an aqueous solution in the temperature range from 25°C to 40°C. As the CA content was more, the temperature sensitivity was higher and the phase transition temperature was lower. The UV light (254 nm, 6 W)-induced dimerization degree of CA was proportional to its content in the copolymers. The release of fluorescein isothiocyanate-dextran from cubic phases containing P(HEA/CA/ODA)s was promoted by UV light irradiation, possibly due to the photo-induced collapse of the copolymer chains. The release from cubic phases incorporating copolymers, for which the CA content was 3.8% and 6.1%, was enhanced by increasing the releasing medium temperature from 23°C to 37°C, possibly due to the thermal collapse of the copolymer chains.  相似文献   

4.
The thermal behavior of poly(ethylene imine) (PEI) hydrates in a water vapor atmosphere was investigated through temperature‐dependent measurements of infrared spectra and X‐ray diffraction. Almost perfectly dried anhydrate melted at about 60 °C during the heating process. Anhydrate containing a small amount of water showed a phase transition to a mixture of hemihydrate and sesquihydrate around 40 °C, at which point the ethylene imine (EI)/water ratio was 1/0.5 in the hemihydrate and 1/1.5 in the sesquihydrate. The hemihydrate transferred to the sesquihydrate around 60 °C, and the latter melted above 80 °C. When the starting PEI sample contained a greater amount of water and consisted of hemihydrate and sesquihydrate, the hemihydrate transferred to the sesquihydrate via heating, and the latter melted around 75 °C. For a sample of dihydrate (EI/water ratio = 1/2) containing an appreciably large amount of water, it transferred to the sesquihydrate around 65 °C, and the latter melted above 90 °C. A sample of dihydrate with a much higher water content existed up to 110 °C and then melted; during this period, no transition to the sesquihydrate was observed. In this way, the starting crystalline phases were found to change for anhydrate and various types of hydrates. Their transition behaviors varied according to the water content. From these data, a phase diagram was successfully derived as a function of the temperature and water content. This phase diagram allowed us to predict the transition behavior during the hydration process at various constant temperatures. For example, at 60 °C, a molten sample should crystallize into a mixture of hemihydrate and sesquihydrate at first, and the hemihydrate should transfer to the sesquihydrate with increasing water content. The latter should change to the dihydrate in the final stage. This prediction was checked with time‐resolved measurements of X‐ray diffraction and infrared spectra during the hydration process at the corresponding temperature; this led to the establishment of the phase diagram. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2937–2948, 2003  相似文献   

5.
Tripolyphosphate (TPP)-responsive MO cubic phase was prepared by immobilizing oligo chitosan in the water channel through its electrostatic attraction with sodium dodecyl sulfate (SDS). The phase transition temperature (PTT) increased with increasing the content of SDS. The PTT of cubic phase whose SDS content was 0%, 0.21%, 0.42%, 0.84%, and 1.68%, determined by polarized microscopy, was about 69.5°C, 72°C, 75°C, 80.5°C, and 95°C, respectively. The PTT did not markedly deviate from that determined by differential scanning calorimetry. The release degree for 72 h of dye (i.e., amaranth and methylene blue) was dependent on the pH value of release medium (pH 3.0 and pH 7.0). Moreover, the release degree significantly increased when the TPP concentration in the release medium increased to 0.4% (w/v). Oligo chitosan was electrostatically complexed with TPP and the complexation took place extensively at the oligo chitosan/TTP mass ratio of 1:0.125 and 1:0.25 and at the oligo chitosan concentration of 1.6% (w/v), evidenced by optical spectroscopy and scanning electron microscopy. It was thought that the complexation was responsible for the TPP concentration-dependent release.  相似文献   

6.
pH and cinnamic acid (CA)-triggerable liposome was prepared by stabilizing dioleoylphosphatidylethanolamine (DOPE) bilayer with polyethyleneimine (PEI)/palmitic acid (PA) mixture. PEI/PA mixture was air/water interface-active, possibly due to the formation of PEI/PA salt conjugate. When the weight ratio of DOPE to PEI/PA mixture was 200:1, 100:1, 50:1, and 20:1, the fluorescence quenching degree of calcein loaded in the DOPE/PEI/PA assembly prepared using PBS (10 mM, pH 7.4) was 70.7%, 68.7%, 35.3%, and 14%, respectively, indicating that DOPE could be assembled into liposome at the physiological pH value with the aid of the PEI/PA mixture. The hydrodynamic mean diameter of liposome increased from 289 nm to 702 nm on increasing the weight ratio of the DOPE to PEI/PA mixture, possibly because of the bulky PEI chains. The release degree in 120 seconds at pH 4.5, pH 6.0, pH 7.4, and pH 9.0 was about 85%, 24.1%, 10.1%, and 62.0%, respectively, when the suspension of liposome of which the DOPE to PEI/PA mixture weight ratio was 50:1 (pH 7.4) was injected into the release medium of different pH values. The triggered release upon the acidification (i.e., pH 7.4–4.5) and the alkalization (i.e., pH 7.4–9.0) was possibly because PA and PEI were deionized under acidic and alkali conditions, respectively; thus the salt bridge of PEI/PA conjugate could break down. The DOPE liposome also exhibited CA-triggered release. The release degree in 120 seconds at 25°C was 23.1% and it was higher than the release degree at 50°C, 10.9%, possibly because CA could render PEI chains condensed and assembled under upper the critical solution temperature.  相似文献   

7.
Salt-responsive monoolein (MO) cubic phase was prepared by in situ ionically gelling alginate contained in its water channels. On the TEM micrographs, bilayers, and water channels, characteristic of MO cubic phase were observed, and alginate and CaCl2 had little effect on the structure. According to the differential scanning calorimetric thermogram, the cubic-to-hexagonal phase transition temperature of the cubic phase containing CaCl2 solution was 46.8°C and it was much lower than that of the cubic phase containing distilled water, 60.5°C. The transition temperature was not significantly affected by alginate. The phase transition temperatures measured by the calorimetric analysis were in accordance with those determined by polarized optical microscopy. An initial burst release of dye (i.e., amaranth) was observed when the gelled alginate was not contained in the water channel of the cubic phase. A sustained release was obtained with the cubic phase containing the gelled alginate. The release of dye loaded in the cubic phase containing the gelled alginate was significantly promoted when the cubic phase came into contact with PBS (10?mM, pH 7.4), possibly because the multivalent cation (Ca2+) bound to alginate chains could be replaced by the monovalent cation (Na+).  相似文献   

8.
Thermally induced phase separation (TIPS) has been developed to prepare porous membranes. The porous structures are mainly dependent on diluents adopted in the TIPS process. We obtained two typical morphologies of poly(vinylidene fluoride) (PVDF) membranes using cyclohexanone (CO) and propylene carbonate (PC) as diluents, respectively. SEM observation displays that porous spherulites are formed from PVDF/CO system, whereas smooth particles result from PVDF/PC system. The TIPS processes of these two systems have been investigated in detail by optical microscope observation and temperature‐dependent FTIR combined with two‐dimensional infrared correlation analysis. Rapid crystallization of PVDF can be seen around 110 °C in the PVDF/CO system, which is consistent with the results of temperature‐dependent FTIR spectra. The spectral evolution indicates a transform of PVDF from amorphous to α‐phase after 110 °C. The νs(C?O) band at 1712 cm?1 narrows and the νs(C? F) band at 1188 cm?1 shifts to 1192 cm?1 before crystallization, which implies the destruction of interaction between PVDF and CO. In contrast, the PVDF/PC system shows slow crystallization with all‐trans conformation assigned to β‐phase and γ‐phase below 60 °C but no obvious change of polymer?diluent interaction. We propose two mechanisms for the different phase behaviors of PVDF/CO and PVDF/PC systems: a solid?liquid phase separation after destruction of polymer?diluent interaction in the former, and a liquid?liquid phase separation process coupled with rich‐phase crystallization in the later. This work may provide new insight into the relationship among morphologies, crystal forms, and phase separation processes, which will be helpful to adjust membrane structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1438–1447  相似文献   

9.
Is there a Wurtzite‐Modification of Lithium Bromide? — Studies on the System LiBr/LiI — Deposition of mixtures of LiBr/LiI (ratio: LiBr/LiI = 3:1, 2:1, 1:1, 1:2, 1:3, 1:4) and of pure LiI and LiBr from the gas phase onto a sapphire substrate at ‐196 °C in a high vacuum chamber were investigated by means of temperature‐dependent X‐ray diffraction. Below 0 °C LiI crystallizes in the hexagonal Wurtzite‐modification (β‐LiI) with a = 451.4(1) und c = 731.1(2) pm, which transforms into the cubic rock salt modification (α‐LiI, a = 602.57(3) pm) by heating up to room temperature. Co‐depositions of LiBr/LiI formed solid LiBr1‐xIx solutions that also crystallize in the Wurtzite‐modification, below room temperature. Compared to β‐LiI, these solid solutions are more stable and transform into the cubic phase at the significantly higher temperature of 80 °C. The lattice constants of LiBr1‐xIx with x ≈ 0.7 are a = 445.48(7), c = 719.1(1) pm and with x ≈ 0.4 are a = 431.50(5), c = 691.7(1) pm. The hexagonal phase LiBr1‐xIx is observed for the complete series of mixed crystals with 0.25 ≤ x ≤ 0.8. Both cubic phases, α‐LiI and LiBr, show solubilities of up to ca. 10 % of the respective other compound. In case of pure LiBr only the cubic modification (a = 551.54(2) pm, 25 °C) was observed in the complete temperature range (‐196 °C to 25 °C).  相似文献   

10.
Fragments of the phase diagrams of the ethylene glycol (EG)-tert-butanol (t-BuOH) and EG-tet-ramethylurea (TMU) binary systems were studied by differential scanning calorimetry in the region rich in EG up to a ~40 mol % concentration of the second component. Liquid-phase stratification occurred at ~10–37 mol % t-BuOH and ~8–25 mol % TMU at ?37°C in the EG-t-BuOH system and at ?22°C in the EG-TMU system. The occurrence of liquid stratification was substantiated by visual observations of the solutions of the concentrations specified at a constant temperature of ?20°C. A comparison of the results obtained with the data on light scattering in the systems under study over the temperature range 25–50°C lends support to the hypothesis of the subcritical state of solutions of nonelectrolytes in solvents with a 3D network of hydrogen bonds at low solute concentrations.  相似文献   

11.
Thermal, dielectric, and mechanical relaxation measurements on miscible blends of polybenzimidazole (PBI) and a polyetherimide (PEI, Ultem 1000) prepared by solution casting from dimethylacetamide (DMAc) reveal a number of structurally related features. Annealing below the glass transition temperature induces an enthalpy relaxation process typical of single-phase glasses of nonequilibrium structure. Dielectric relaxation experiments on samples annealed at ambient conditions reveal two relaxation processes below 400°C. At lower temperatures (50–200°C), the desorption of water is observed. Above 200°C in the first run, a composition-dependent relaxation is seen at the highest frequencies (100 kHz) while a relaxation approximately independent of composition appears in the second run. The latter corresponds to the glass transition of the PEI phase. The glass transition of PBI at this frequency is above the degradation temperature. At lower frequencies a strongly dispersive electrode polarization process masks the high-temperature relaxations. Dynamic mechanical results show similar features with respect to phase separation; the main difference is that the tan δ curves in the first run are complicated by the desorption of residual solvent.  相似文献   

12.
The temperature-composition phase diagram of the HgTe? HgI2 system was determined from 0 to 45 Mol-% HgI2 between 25 and 670°C using Debye-Scherrer powder X-ray diffraction techniques and differential thermal analysis. Solid solutions of HgTe and HgI2 with the cubic, zinc blende-type structure exist above 300°C, having a maximum solubility of 11.7 ± 0.8 Mol-% HgI2 in HgTe at 501 ± 5°C. The known monoclinic compound Hg3Te2I2 is formed by a peritectic reaction upon cooling at 501 ± 5°C, with the peritectic point at approximately 37 ± 4 Mol-% HgI2.  相似文献   

13.
We developed a reversed‐phase high‐performance liquid chromatography method with ultraviolet detection using on‐line complexation with Cu(II) ion for analysis of five alcohols including diols and triol (methanol, ethanol, 1,2‐propanediol, 1,3‐propanediol, and glycerol). The Cu(II) ion concentration in the mobile phase had a great influence on the peak areas of these alcohols, but not on their retention times. Column temperature (25−40°C) and pH of the mobile phase did not affect the separation of analytes. The optimum separation conditions were determined as 5 mM CuSO4, 3 mM H2SO4, and 3 mM NaOH at 30°C. The ratio of the peak areas for three alcohols (methanol, 1,2‐propanediol, and glycerol) was in good agreement with that calculated from the obtained stability constants, molar absorption coefficients for the 1:1 Cu(II) complexes with the three alcohols, and the injected molar quantities. This fact strongly suggests that the observed high‐performance liquid chromatography signals resulted from formation of the 1:1 Cu(II)–alcohol complexes. Using the proposed method, these five alcohols in spirit, liquid for electronic cigarette, mouthwash, and nail enamel remover samples were successfully analyzed with only a simple pretreatment.  相似文献   

14.
We developed a new method for the transformation of large unilamellar vesicles (LUVs) into the cubic phase. We found that the addition of low concentrations of Ca(2+) to suspensions of multilamellar vesicles (MLVs) of membranes of monoolein (MO) and dioleoylphosphatidylglycerol (DOPG) mixtures (DOPG/MO) changed their L(alpha) phase to the cubic phases. For instance, the addition of 15-25 mM Ca(2+) to 30%-DOPG/70%-MO-MLVs induced the Q(229) phase, whereas the addition of > or =28 mM Ca(2+) induced the Q(224) phase. LUVs of DOPG/MO membranes containing > or =25 mol % DOPG were prepared easily. Low concentrations of Ca(2+) transformed these LUVs in excess buffer into the Q(224) or the Q(229) phase, depending on the Ca(2+) concentration. For example, 15 and 50 mM Ca(2+) induced the Q(224) and Q(229) phase in the 30%-DOPG/70%-MO-LUVs at 25 degrees C, respectively. This finding is the first demonstration of transformation of LUVs of lipid membranes into the cubic phase under excess water condition.  相似文献   

15.
Thermal behavior of poly(ethylene imine) [PEI] has been studied using simultaneous WAXD/DSC measurement system. PEI exhibits water-induced and thermally-induced phase transitions among four kinds of crystalline hydrates: anhydrate (EI/water = 1/0), hemihydrate (1/0.5), sesquihydrate (1/1.5), and dihydrate (1/2). The chain conformation changes from a double helix in the anhydrate to a planar zigzag form in the three hydrates. The anhydrate melts at 60 °C while the hydrates melt differently in the temperature region of 70–110 °C. By means of the simultaneous WAXD/DSC measurements, complex DSC thermograms of PEI hydrates were characterized on the basis of X-ray diffractions obtained concurrently.  相似文献   

16.
In the present investigation, a simple and isocratic HPLC‐UV method was developed and validated for determination of rilpivirine (RPV) from dosage forms (tablets and nanoparticles) and biological matrices like HeLa cell lysates. The separation and analysis of RPV was carried out under isocratic conditions using (a) a Gemini reversed‐phase C18 column (5 µm; 4.6 × 150 mm) maintained at 35°C, (b) a mobile phase consisting of a mixture of acetonitrile and 25 m m potassium dihydrogen phosphate (in the ratio 50:50 v/v) at a flow rate of 0.6 mL/min and (c) atazanavir as an internal standard. The total run time was 17 min and the analysis of RPV and internal standard was carried out at 290 nm. The method was found to be linear (r2 value > 0.998), specific, accurate and precise over the concentration range of 0.025–2 µg/mL. The lower limit of quantification was 0.025 µg/mL, the limit of detection was 0.008 µg/mL and the recovery of RPV was >90%. The stability of the RPV analytical method was confirmed at various conditions such as room temperature (24 h), ?20°C (7 days), three freeze?thaw cycles and storage in an autosampler (4°C for 48 h). The method was successfully applied for the determination of RPV from conventional dosage forms like tablets, from polymeric nanoparticles and from biological matrices like HeLa cell lysates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The phase behavior of the system water, n-heptane and the nonionic surfactant Igepal® CA520 has been studied by visual inspection, high-performance liquid chromatography, polarizing microscopy and freeze-fracture electron microscopy. The phase diagram at 25?°C contains two large homogeneous microemulsion phases, an extended region of a lamellar liquid crystalline structure and some two- and three-phase regions. The oil-rich part of the phase diagram has been investigated by static and dynamic light scattering in order to examine the behavior of the collective diffusion coefficient and the scattering intensity in the presence of increasing concentrations of water, starting from the binary system of n-heptane and Igepal® CA520. The results suggested that at a very low water content the aggregates of the microemulsion are small. With the exception of this region the structure is bicontinuous.  相似文献   

18.
Summary The separation of the D and L enantiomers of eighteen essential α amino acids has been investigated by ligand-exchange chromatography (LEC). The effect of column temperature on the retention times and resolution of individual amino acid enantiomers has been studied by varying the temperature from 25 to 50 °C for a mobile phase containing Cu2+ ions. By use of a temperature of 50 °C and Zn2+ in the mobile phase, eight of the eighteen amino acid enantiomers can be resolved sufficiently well for practical application. Only phenylalamine, tyrosine, and tryptophan can be separated by use of Ni2+ as complexation metal at 50 °C. LEC has been used to monitor the decarboxylation of racemic DL-aspartic acid byPseudomonas dacunhae. Analysis of DL amino acid enantiomers in different media was performed at column temperatures of 30 and 50°C by addition of 0.125 mM Cu2+ to the aqueous mobile phase. It was found that the analytical performance is most dependent on the identity of the metal used for complexation; the concentration of the metal was of secondary importance and the column temperature less important still.  相似文献   

19.
Bi1.5MgNb1.5O7 (BMN) thin films were fabricated on Au/Ti/SiO2/Si(100) substrates using a sol?Cgel spin coating process. Thermo decomposition of the BMN precursor gel was discussed. The structures, morphologies, dielectric properties and voltage tunable dielectric properties were investigated. The deposited films showed a cubic pyrochlore structure after annealing at 550?°C or higher temperatures. With the annealing temperature increased from 500 to 800?°C, the root-mean-square surface roughness of the films increased from 0.6 to 6.8?nm. Additional phase, MgNb2O6, emerged after annealing at 800?°C due to the volatilization of Bi element. The dielectric properties and tunability of the films were annealing temperature dependent. BMN thin films annealed at 750?°C had a high dielectric constant of 135 and low dielectric loss of 0.002 at 1?MHz. The high tunability of 31.3?% and figure of merit of 156.5 were obtained under an applied electric field of 1?MV/cm at room temperature.  相似文献   

20.
Monoolein (MO) cubic phase, which can release its payload in answering to reducing condition, was prepared by including a disulfide proteinoid composed of Asp, DL-leucine (Leu), and dithiodipropionic acid (DTPA) in its water channel. On the TEM micrograph, the cubic phase could accommodate the proteinoid with no change in its bilayer structure. The phase transition temperature of the cubic phase was about 58.7°C, and it was little affected by the proteinoid. The release degree of allura red loaded in the cubic phase was higher at a higher dithiothreitol (DTT) concentration. The proteinoid would be broken down by the reducing agent, facilitating the release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号