首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
We report on the growth (using metal-organic vapour phase epitaxy) and optical characterisation of single and multiple layers of InGaN quantum dots (QDs), which were formed by annealing InGaN epilayers at the growth temperature in nitrogen. The size and density of the nanostructures have been found to be fairly similar for uncapped single and three layer QD samples if the GaN barriers between the dot layers are grown at the same temperature as the InGaN epilayer. The distribution of nanostructure heights of the final QD layer of three is wider and is centred around a larger size if the GaN barriers are grown at two temperatures (first a thin layer at the dot growth temperature, then a thicker layer at a higher temperature). Micro-photoluminescence studies at 4.2 K of capped samples have confirmed the QD nature of the capped nanostructures by the observation of sharp emission peaks with full width at half maximum limited by the resolution of the spectrometer. We have also observed much more QD emission per unit area in a sample with three QD layers, than in a sample with a single QD layer, as expected.  相似文献   

2.
The effects of matrix materials on the structural and optical properties of self-assembled InAs quantum dots (QDs) grown by a molecular beam epitaxy were investigated by atomic force microscopy, cross-sectional transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. Cross-sectional TEM image indicated that the average lateral size and height of InAs QDs in a GaAs matrix on a GaAs substrate were 20.5 and 5.0 nm, respectively, which showed the PL peak position of 1.19 μm at room temperature. The average lateral size and height of InAs QDs buried in an InAlGaAs matrix on InP were 26.5 and 3.0 nm, respectively. The PL peak position for InP-based InAs QDs was around 1.55 μm at room temperature. If we only consider the size quantization effects, the difference in PL peak position between two QD systems with different matrices may be too large. The large difference in peak position can be mainly related to the QD size as well as the strain between the QDs and the matrix materials. The intermixing between the QDs and the matrix materials can partially change the In composition of QDs, resulting in the modification of the optical properties.  相似文献   

3.
The SiC/SiOx hetero-superlattice (HSL) consisting of alternating near-stoichiometric SiC barrier layers for the electrical transport and silicon rich SiOx matrix layers for the quantum dot formation is a promising approach to the realization of silicon quantum dot (Si–QD) absorbers for 3rd generation solar cells. However, additional defect states are generated during post deposition annealing needed for the Si–QD formation causing an increase in sub-band gap absorption and a decrease in PL intensity. Proper passivation of excess defects is of major importance for both the optical and electrical properties of the SiC/SiOx HSL Si–QD absorber. In this work, we investigate the effectiveness of the hydrogen reincorporation achieved with hydrogen plasma in a plasma-enhanced chemical vapor deposition (PECVD) reactor, hydrogen dissociation catalysis in hot-wire chemical vapor deposition (HWCVD) reactor and annealing in forming gas atmosphere (FGA). Both the HSL samples and single layer reference samples are tested. The passivation quality of the hydrogen reincorporation was examined by comparing electrical and optical properties measured after deposition, after annealing and after passivation. In addition, the formation of Si–QDs in SiC/SiOx HSL was evaluated using high resolution transmission electron microscopy. We demonstrated that hydrogen can be successfully reincorporated into the annealed HSL sample and its single layer reference samples. FGA passivation is most effective for SiO1.2 single layers and HSL samples. Passivation with PECVD appeared to be only effective for SiC single layers.  相似文献   

4.
ABSTRACT

A novel BODIPY-based dye with highly emissive character was configured by Sonogashira coupling and routinely characterized by NMR and MS technology. The emission of dye was investigated in solution/film/solid and shows intensive emission. In solution, the emission peak appeared around 510 nm with little influence by the polar environment. The terthiophene plays an effective antenna effect, harvesting the light and transferring the energy to BODIPY. The pseudo Stoke's shift enlarged to ~170 nm in solution. In film, the emission peak shifted to 563 nm in polycarbonate matrix. And it shifted further to 585 nm in solid due to the highly twisted structure, which avoided closely regular-tight packing. The dye rendered an intense fluorescence, good optothermal stability, and high fluorescence quantum yield (0.55). The solid emission showed highly red emission with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.69, Y = 0.31). Thus, the synthesized dye is idea candidate for emitting materials.  相似文献   

5.
采用AFORS-HET软件对超薄异质结太阳能电池的窗口层、本征层的掺杂浓度、厚度、带隙等参数进行了数值模拟和优化,结合实际具体分析了每个参数对超薄异质结电池性能的影响规律,且得出了最佳的优化参数。模拟结果表明:对于衬底厚度仅为80 μm的超薄异质结太阳能电池,随着窗口层厚度的增加,电池性能整体呈现下降的趋势,通过结合实际,得出窗口层的最佳厚度范围是5~9 nm;随着窗口层掺杂浓度的增加,电池性能整体呈现先增加后趋于恒定的趋势,窗口层理论上的最佳掺杂浓度范围为7×1019~8×1019;窗口层的带隙宽度对电池的开路电压和效率影响较大,对填充因子和短路电流有较小的影响,窗口层的最优带隙范围为1.85~2.0 eV。随着本征层厚度的增加,电池的填充因子FF和效率Eff呈现先增加后减小的趋势,短路电流逐渐减小,而开路电压基本不变,本征层的最佳厚度是5~10 nm;当本征层的光学带隙小于1.8 eV时,对电池性能影响较小,当大于1.8 eV,电池性能急剧下降,因此本征层的最佳带隙范围是1.6~1.8 eV。  相似文献   

6.
《Journal of Non》2006,352(23-25):2476-2479
Vertical and transverse confinement of electromagnetic radiation in planar organic light emitting diodes (OLED) has been widely addressed in order to maximize their external quantum efficiency. Here we propose a planar micro-cavity OLED with the aim to tailor the angular emission pattern and obtain light emission suppression in the vertical direction. Vertical confinement was obtained by depositing a conventional molecular OLED on a glass substrate coated with a thin gold semitransparent layer and a silica spacer. The conventional OLED was obtained by depositing under vacuum an indium tin oxide hole-injection layer, an organic hetero-junction constituted by N,N-diphenyl-N,N-bis(3-methyl phenyl)-1,1-biphenyl-4,4-diamine (TPD) and tris(8-hydroxy-quinoline)-aluminium (Alq3) layers and a LiF/Al electron-injection layer. Performance of the micro-cavity OLEDs was characterized by measuring the current/voltage characteristics and the angular dependence of the brightness and emission spectrum. The results were compared to those obtained for reference conventional OLEDs, without vertical confinement. Suppression of the green emission in the vertical direction was observed, confirming what was expected by calculations of dipole emission in a micro-cavity structure.  相似文献   

7.
Electroluminescent (EL) properties of Ir(III) complex, [(2,4-diphenylquinoli-ne)]2Iridium picolinic acid N-oxide [(DPQ)2Ir(pic-N-O)] were investigated using PEDOT:PSS and reduced graphene oxide (rGO) as a hole transport layer for solution processable phosphorescent organic light-emitting diodes (PhOLEDs). High performance solution-processable PhOLED with PEDOT:PSS and (DPQ)2Ir(pic-N-O) (8 wt%) doped CBP:TPD:PBD (8:56:12) host emission layer were fabricated to give a high luminance efficiency (LE) of 26.9 cd/A, equivelent to an external quantum efficiency (EQE) of 14.2%. The corresponding PhOLED with rGO as a hole transport layer exhibited the maximum brightness and LE of 13540 cd/m2 and 16.8 cd/A, respectively. The utilization of the solution processable rGO thin films as the hole transport layer offered the great potential to the fabrication of solution processable PhOLEDs.  相似文献   

8.
The properties of self-assembled InAs quantum dots (QDs) grown by molecular beam epitaxy on GaAs substrates were investigated. The surface properties of samples were monitored by reflection high-energy electron diffraction to determine growth. Photoluminescence (PL) and transmission electron microscope (TEM) were then used to observe optical properties and the shapes of the InAs-QDs. Attempts were made to grow InAs-QDs using a variety of growth techniques, including insertion of the InGaAs strained-reducing layer (SRL) and the interruption of In flux during QD growth. The emission wavelength of InAs-QDs embedded in a pure GaAs matrix without interruption of In flux was about 1.21 μm and the aspect ratio was about 0.21. By the insertion InGaAs SRL and interruption of In flux, the emission wavelength of InAs-QDs was red shifted to 1.37 μm and the aspect ratio was 0.37. From the PL and TEM analysis, the properties of QDs were improved, particularly when interruption techniques were used.  相似文献   

9.
采用化学水浴沉积法在不同氨水用量下制备了Cu(In,Ga)Se2太阳能电池的缓冲层CdS薄膜,根据化学平衡动力学计算出混合溶液中反应粒子的初始浓度、pH值和离子积,利用台阶仪、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、量子效率测试仪(EQE)和IV测试仪对制备样品的薄膜厚度、表面形貌、晶体结构、量子效率和光电转...  相似文献   

10.
We report growth of InAs/GaAs quantum dots (QDs) by molecular beam epitaxy with low density of 2 μm?2 by conversion of In nanocrystals deposited at low temperatures. The total amount of InAs used is about one monolayer, which is less than the critical thickness for conventional Stranski–Krastanov QDs. We also demonstrate the importance of the starting surface reconstruction for obtaining uniform QDs. The QD emission wavelength is easily tunable upon post-growth annealing with no wetting layer signal visible for short anneals. Microphotoluminescence measurements reveal well separated and sharp emission lines of individual QDs.  相似文献   

11.
Abstract

In the last decade, the possibility to use liquid crystal droplets as optical micro-cavities and lasers has attracted much attention since it paves the way for many applications in the field of sensors or tunable photonics. Several techniques can be used to obtain small micro-resonators as, for example, dispersing a cholesteric liquid crystal inside an immiscible isotropic fluid to create an emulsion. Since liquid crystals are extremely sensitive to external factors as temperature or external fields, laser tuning can be easily achieved. Here, we report on the possibility to tune the laser emission from dye doped cholesteric liquid crystals microdroplets dispersed in a glycerol matrix in presence of nitric acid molecules in the emulsion. Using a fluorescent dye with pH dependent optical properties, the emitted laser wavelength can be tuned in a range of 60?nm. This effect could find applications for the development of spectroscopy based sensors.  相似文献   

12.
Abstract

In this study, we demonstrate the fabrication of hybrid plasmonic solar cells using gold nanoparticles (AuNPs). Two types of AuNPs, gold nanospheres (AuNSs) and gold nanorods (AuNRs), were incorporated in a hole transport layer (HTL) (PEDOT:PSS) on a metallic grating electrode. The organic solar cells (OSCs) structure comprised an indium-tin-oxide (ITO)-coated glass substrate/PEDOT:PSS:AuNSs:AuNRs/P3HT:PCBM/Al grating electrode. Adding AuNPs induced localized surface plasmon resonance (LSPR), while grating structured Al at the interface with a photoactive layer excited the propagating surface plasmons. Compared with a flat reference device, the proposed OSCs exhibited improved photovoltaic properties by increasing both the short-circuit current density (JSC) and the power conversion efficiency (PCE) with large enhancements of 16.23% and 14.06%, respectively. The efficiency improvement was attributed to increased broadband absorption and improved electrical properties inside the thin-film devices.  相似文献   

13.
ABSTRACT

DAPCz and DANaPCz have been successfully synthesized and characterized. DAPCz and DANaPCz in film state showed absorption in the range of 322 to 345 nm wavelength and exhibited blue photoluminescence (PL) emission peaks at 428 and 425 nm. PL wavelength of DAPCz is red-shifted by 3 nm than that of DANaPCz, which is due to the carbazole electron donating group of DAPCz. The use of DAPCz in a non-doped OLED device resulted in blue emission with current efficiency of 1.01 cd/A and C.I.E. of (0.26, 0.37).  相似文献   

14.
Abstract

The influence of annealing temperature on the output characteristics of solution processable vertical organic light-emitting transistor (VOLET) was investigated. Poly[(vinylidenefluoride-co-trifluoroethylene] (PVDF-TrFE) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) have been used as a dielectric and emissive layer, respectively, in a silver nanowire (AgNW) sourced VOLET. It was found that the performance of the VOLET is the best after annealed at 100 oC. A high polarization of the PVDF-TrFE promotes more charged carrier to be accumulated at AgNW/MEH-PPV interface. Surface morphology and photoluminescence results show that a high surface roughness of MEH-PPV exhibit bright emission due to reduction of internal reflection of light emission.  相似文献   

15.
本文主要对低压化学气相沉积(LPCVD)法制备N型高效晶硅隧穿氧化层钝化接触(TOPCon)电池工艺进行研究。分析LPCVD法制备隧穿氧化层及多晶硅层的影响因素,研究了不同氧化层厚度、多晶硅厚度及多晶硅层中P掺杂量对太阳能电池转换效率的影响。结果表明:当隧穿氧化层厚度在1.55 nm时,钝化效果最佳;多晶硅层厚度120 nm时Voc达到最高值;多晶硅层厚度在90 nm时Eff最高。当P掺杂量为3.0×1015 cm-2时可获得较高的Voc,原因是随着P掺杂量的增加,多晶硅层场钝化效果提高。  相似文献   

16.
A grooved Al0.25Ga0.75N underlying layer on an AlN-coated sapphire substrate was used to grow crack free and low dislocation density Al0.25Ga0.75N to successfully realize high-performance UV A light emitters. A light-emitting diode grown on a grooved AlGaN underlying layer exhibited an output power of 12 mW at a DC current of 50 mA for a peak emission wavelength of 345 nm with an external quantum efficiency of 6.7%, which is the highest to date in this wavelength region. We also fabricated UV A laser diodes with an emission wavelength of 356 nm at a pulsed injection current of 414 mA.  相似文献   

17.
Downconversion (DC) luminescence with emission at about 1000 nm under excitation of 448‐nm light in Ho3+/Yb3+ codoped α‐NaYF4 single crystal is realized. The crystal was grown by the Bridgman method using KF as an assisting flux in a NaF‐YF3 system. The energy‐transfer process and quantum cutting (QC) mechanisms are presented through the analysis of the spectra. The energy‐transfer processes of first‐ and second‐order cooperative DC are responsible for the increase of the emission intensity at 1000 nm, and it is the first‐order cooperative DC that is dominant for the DC process. When the Ho3+ concentration is fixed at about 0.8 mol%, the optimal concentration for ∼1000 nm emission is 3.02 mol% Yb3+ in the current research. The energy‐transfer efficiency and the total quantum efficiency are analyzed through the luminescence decay curves. The maximum quantum cutting efficiency approaches to 184.4% in α‐NaYF4 single crystals of 0.799 mol% Ho3+ and 15.15 mol% Yb3+. However, the emission intensity at 1000 nm decreases while the energy‐transfer efficiency from Ho3+ to Yb3+ increases, which may result from the fluorescence quenching between Ho3+ and Yb3+ ions, Yb3+ and Yb3+ ions.  相似文献   

18.
ABSTRACT

TIACA-I, TIACA-II were synthesized by changing the substitution position of the imidazole group in the diazocine core. TIACA-I, TIACA-II in the film state showed absorption in the range of 354 to 392 nm and exhibited blue photoluminescence (PL) emissions at 448 and 462 nm, respectively. The PL wavelength of TIACA-II is red-shifted by 14 nm than that of TIACA-I due to the electron-donating intensity depending on the position of the imidazole group. The use of TIACA-II in a non-doped OLED device resulted in blue emission with current efficiency of 2.84 cd/A and CIE of (0.15, 0.18).  相似文献   

19.
A series of novel polyvinyl alcohol (PVA) hydrogels were synthesized by cross-linking of acrylate-modified PVA in aqueous solutions. Hydrogels were prepared at a temperature range −7.5 to −25 °С, macromer concentration 4-12 wt.%, and initiator concentration 0.4 to 1.6 mg/ml. The swelling behavior of polymeric hydrogels in aqueous media with different pH and ionic strength values was investigated. It was shown that they possess a high level of water absorption. The influence of different factors (porosity, pore size, and pore size distribution) and reaction conditions on the hydrogel structure was studied. The interior morphology of the hydrogel networks exhibits a complicated structure filled by fibrillar, lamellar and dendritic formations consisting of cross-linked polymer. The dispersed pores which are randomly distributed can be observed inside these formations and between them.  相似文献   

20.
Blue-green laser diode grown by photo-assisted MOCVD   总被引:1,自引:0,他引:1  
Operation of the first blue-green laser diode grown by metalorganic chemical vapor deposition has been demonstrated at 77 K under pulsed current injection. The precursors were dimethylzinc, dimethylcadmium, diethylsulfide, bismethyl-cyclopentadienyl-magnesium, and dimethylselenide. Diisopropylamine and ethyliodide were used for a p-type and n-type doping under irradiation with ultraviolet light generated by a high-pressure mercury lamp, respectively. A 1 × 1018 cm−3 nitrogen-atom concentration, which was measured by secondary ion mass spectroscopy, was obtained in the p-ZnSe contact layer. The 4.2 K photoluminescence spectrum was dominated by strong donor-acceptor pair emission and the net acceptor concentration was 1.4 × 1016 cm−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号