首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to achieve a molecule‐level dispersion of graphene nanosheets (GNSs) and a maximum interfacial interaction between GNSs and a polymer matrix. GNS‐reinforced poly (ethylene glycol) (PEG)/poly (lactic acid) (PLA) nanocomposites are obtained by a facile and environment‐friendly preparation method. Graphite oxide and GNSs are characterized by atomic force microscopy, Raman spectroscopy, and X‐ray diffraction. Scanning electron microscopy shows that the state of dispersion of the GNS in the PEG/PLA matrix is distribution. The tensile strength and Young's modulus increases by 45% and 188%, respectively, with the addition of 4.0 wt% GNSs. The thermal stability of the GNS‐based nanocomposites also improves. Differential scanning calorimetry indicates that GNSs have no remarkable effect on the crystallinity of the nanocomposites. The effective reinforcement of the nanocomposites is mainly attributed to the highly strong molecular‐level dispersion of the GNSs in the polymer matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Graphene (G) and graphene oxide (GO) were added into epoxy resin (EP) respectively via chemical modification and physical ultrasound technology to improve the tribological behaviour of EP coating. The topographies of G and GO were detected by scanning probe microscopy. The chemical structures of the fillers before and after modification were identified by Fourier transform infrared spectrometer. The across‐section topographies of the coatings were detected by scanning electron microscopy. The tribological behaviour of the coatings was evaluated by UMT‐3 tribology tester, surface profiler and scanning electron microscopy. The results revealed that the coefficient of friction of the coatings decreased, and the wear resistance of the coatings improved with the addition of the G and GO. GO could improve the tribological performance of EP further compared to G. When containing 0.5 wt% G and 0.75 wt% GO, the coatings had the lowest coefficient of friction and best wear resistance. When the contents of G reached 0.75 wt%, and GO reached 1 wt%, the tribological performance of the composite coatings decreased as a result of the agglomeration of the fillers. Finally, the anti‐friction and anti‐wear mechanisms of G‐EP and GO‐EP composite coatings were discussed in detail based on the results obtained in the preceding texts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This article has been devoted to investigation of the tribological properties of ultra‐high molecular polyethylene/graphene oxide nanocomposite. The nanocomposite of ultra‐high molecular polyethylene/graphene oxide was prepared with 0.5, 1.5, and 2.5 wt% of graphene oxide and with a molecular weight of 3.7 × 106 by in‐situ polymerization using Ziegler–Natta catalyst. In this method, graphene oxide was used along with magnesium ethoxide as a novel bi‐support of the Ziegler–Natta catalyst. Analyzing the pin‐on‐disk test, the tribological properties of the nanocomposite, such as wear rate and mean friction coefficient, were investigated under the mentioned contents of graphene oxide. The results showed that an increase in graphene oxide content causes a reduction in both wear rate and mean coefficient friction. For instance, by adding only 5 wt% graphene oxide to the polymeric matrix, the wear rate and mean coefficient friction decreased about 34% and 3.8%, respectively. Also, the morphological properties of the nanocomposite were investigated by using X‐ray diffraction and scanning electron microscopy. In addition, thermal properties of the nanocomposite were analyzed using differential scanning calorimetry, under various contents of graphene oxide. The results of the morphological test indicated that the graphene oxide was completely exfoliated into the polymeric matrix without any agglomeration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A new polycarbonate (LS2) nanocomposite containing a 3 wt% proportion of the organically modified montmorillonite bentone 2010 (B 2010) has been prepared by extrusion and injection moulding, and its tribological properties determined under a pin-on-disc configuration against stainless steel. The nanocomposite (LS2 + 3% B 2010) presents a 88% reduction in friction and up to two orders of magnitude reduction in wear rate with respect to the base polymer. The new nanocomposite has been characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and its thermal and dynamic mechanical properties have been determined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) techniques. The nanocomposite shows a uniform dispersion of the nanoclay as pointed out by two different statistical methods. The good tribological performance of the new nanocomposite is attributed to this uniform microstructure and to the increase in the nanoclay stacking distance.  相似文献   

5.
顾群 《高分子科学》2013,31(4):670-678
Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene nanosheet (GNS) composites were prepared via a solution-casting method at low GNS loadings in this work. Transmission electron microscopy revealed that a fine dispersion of GNSs was achieved in the PHBV matrix. The thermal properties of the nanocomposites were investigated by thermogravimetric analysis, and the results showed that the thermal stability of PHBV was significantly improved with a very low loading of GNSs. Nonisothermal melts crystallization behavior, spherulitic morphology and crystal structure of neat PHBV and the PHBV/GNSs nanocomposites were investigated, and the experimental results indicated that crystallization behavior of PHBV was enhanced by the presence of GNSs due to the heterogeneous nucleation effect; however, the two-dimensional (2D) GNSs might restrict the mobility of the PHBV chains in the process of crystal growing. Dynamic mechanical analysis studies showed that the storage modulus of the PHBV/GNSs nanocomposites was greatly improved.  相似文献   

6.
李忠明  陈晨 《高分子科学》2012,30(6):879-892
The effect of the different geometrical dimensionality of two dimensional graphene nanosheets(2D GNSs) and one dimensional carbon nanotubes(1D CNTs) on the non-isothermal crystallization of an ethylene-vinyl acetate(EVA) copolymer at high loading(5 wt%) was studied.Transmission electron microscopy indicated a homogeneous dispersion of GNSs and CNTs in EVA obtained by a solution dispersion process.Fourier-transform infrared spectroscopy and differential scanning calorimetry measurements showed that 1D CNTs and 2D GNSs acted as effective nucleating agents,with a noticeably increased onset crystallization temperature of EVA.A high weight fraction of nano-fillers slowed the overall crystallization rate of composites.At the same crystallization temperature,the crystallization behavior of GNS/EVA composites was slowed compared to that of the CNT/EVA ones owing to larger nucleus barrier and activation energy of diffusion.Dynamic mechanical relaxation and rheology behavior of CNT/EVA and GNS/EVA composites demonstrated that the planar structure of the GNSs had an intensively negative effect on EVA chain mobility due to interactions between nanofillers and polymer chains,as well as spatial restriction.  相似文献   

7.
采用电弧放电法大规模制备了层数少, 导电率高, 结晶性好的石墨烯纳米片(GNSs). 通过扫描电镜(SEM)和透射电镜(TEM)表征发现制得的石墨烯形貌良好. 然而电化学测试表明GNSs作为电极材料的电容性能不好. 为了增加材料表面电化学反应活性点, 促进GNSs在水系电解液中的润湿性, 我们对所制备的GNSs表面进行了硝酸改性处理. 结果显示硝酸处理后的石墨烯纳米片(H-GNSs)表面新增了较多的含氧氮官能团,其亲水性得到了显著提高. 对H-GNSs的电化学研究表明: 硝酸改性处理后的GNSs在2 mol·L-1 KOH溶液中电流密度为0.5 A·g-1时, 比电容可达65.5 F·g-1, 约为改性前的30 倍; 此外, H-GNSs作为电极材料连续进行2000次充放电测试后还展示出了良好的循环稳定性, 是一种潜在的超级电容器电极材料.  相似文献   

8.
《先进技术聚合物》2018,29(2):906-913
Nylon 66 microcomposites with various weight percentage of titanium dioxide (TiO2) were prepared by a twin screw extruder and investigated for mechanical and tribological properties. Mechanical properties of the composite such as tensile strength/modulus, flexural strength/modulus, impact, and compressive strength first showed an increase up to 6 wt% TiO2 followed by a decrease at higher filler loading. The value of heat deflection temperature increased with the increase in wt% of TiO2. Sliding wear tests were performed on pin‐on‐disk equipment under different loads, sliding velocity, and sliding distance combinations. It was found that micro‐TiO2‐Nylon 66 composite exhibited reduced wear and coefficient of friction up to 6 wt% TiO2. Micro‐TiO2 at 2 wt% was most effective in improving the tribological properties of plain nylon 66. The worn surfaces were examined by scanning electron microscopy to understand the wear mechanism. The optimal combination from 2 wt% to 6 wt% micro‐TiO2‐Nylon 66 can be used depending upon the application requiring improvement in tribological or mechanical properties, respectively.  相似文献   

9.
The development of high performance lubricants has been driven by increasingly growing industrial demands and environmental concerns. Herein, we demonstrate oil‐soluble polymer brush‐grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil‐miscible poly(lauryl methacrylate) brush‐grafted silica and titania NPs were synthesized by surface‐initiated atom transfer radical polymerization. These hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at ?20, 22, and 100 °C for ≥55 days. High‐contact stress ball‐on‐flat reciprocating sliding tribological tests at 100 °C showed that addition of 1 wt % of hairy NPs into PAO led to significant reductions in coefficient of friction (up to ≈40 %) and wear volume (up to ≈90 %). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.  相似文献   

10.
Based on the ground‐based simulation facility, the effects of atomic oxygen (AO) irradiation on the structural and tribological properties of pure polytetrafluoroethylene (PTFE) and carbon fiber and MoS2‐filled PTFE composites were studied by scanning electron microscopy, X‐ray photoelectron spectroscopy, and a ball‐on‐disc tribometer. The results shown that AO irradiation had significant effects on the structural and tribological properties of pure PTFE, in which the surface morphologies, mass loss, friction coefficient, and wear rate had been changed greatly after AO irradiation. However, it was noticeable that the addition of carbon fiber and MoS2 filler to PTFE could improve the AO resist capacity and tribological properties of PTFE composites significantly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
To understand the effects of atomic oxygen (AO) irradiation on the structural and tribological behaviors of polymer composites, polyimide/Al2O3 composites were irradiated with AO in a ground‐based simulation facility. The structural changes were characterized by X‐ray photoelectron spectroscopy and attenuated total‐reflection FTIR, whereas the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy analysis of the worn surfaces. It was found that AO irradiation induced the oxidation and degradation of polyimide molecular chains, which increased the O concentration and decreased the C concentration in the composite surfaces. The destruction action of AO changed the surface chemical structure and morphology of the samples. Friction and wear tests indicated that AO irradiation decreased the friction coefficient but increased the wear rate of both pure and Al2O3 filled polyimides. In terms of the tribological properties, appropriate content of Al2O3 might be favorable for the improvement of tribological properties in AO environment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The 2 D nanomaterials have achieved the superlubrication property whatever in solid or liquid lubrication in recent years.However,whether or not the nanosheets can stably disperse in oils and smoothly enter into the asperity of friction pairs is crucial for exerting the function of antifriction.The structure of 2 D QDs is desirable for addressing these issues due to its smaller 3 D size.In this study,we developed a facile preparation process for WS2 QDs with uniform 2 nm size from nanosheets via hydrothermal-assisted grinding approach.The structure of the as-obtained WS2 QDs was determined by a series of characterizations.The results showed that the as-obtained WS2 QDs exhibited the typical spectrum features of nanosized quantum dot.The results of the tribological performance in grease verified that the average friction coefficient(ACOFs) and wear volume(AWVs) were decreased by 7.89% and 63.90%relative to grease,respectively,exhibiting a preferable friction reducing and wear resistance.  相似文献   

13.
The binding of 3d (Sc, Ti, V), 4d (Y, Zr, Nb), and 5d (La, Hf, Ta) transition metals on graphene nanosheet (TM–GNS) with hydrogen-terminated edges and the adsorption of H2CO and HCN molecules on the pristine and TM-doped GNSs were theoretically studied using a density functional theory method. The calculation showed that all TM atoms had strong binding with GNS, in which the Ta atom displayed the strongest interaction with GNS. The H2CO and HCN molecules showed much stronger adsorption on the TM–GNSs than that on the pristine GNS. The H2CO showed stronger interactions with TM–GNSs than that of HCN, in which the Ta-doping displayed the strongest interactions between the GNS and H2CO or HCN. The adsorption interactions induced dramatic changes of TM–GNS electronic properties. The results revealed that the adsorption strength and sensor ability of GNS can be greatly improved by introducing appropriate TM dopants. Therefore, TM-doped GNSs are suitable for application in H2CO and HCN storage and sensor.  相似文献   

14.
合成了2-十二烷硫基-4-苯基-1,3,4-噻二唑-5-硫酮(DBTT),用1H NMR,元素分析,红外光谱技术对其结构进行了表征,用热重分析仪考察了其热稳定性.作为菜籽油(RSO)添加剂,在四球摩擦磨损试验机上测试了其摩擦磨损性能;用扫描电子显微镜观察分析了钢球磨损表面形貌.结果表明:所合成的化合物具有较高的热稳定性,能够提高菜籽油的抗磨减摩性能.  相似文献   

15.
为了探索生物柴油碳烟(BDS)作为水基润滑添加剂的应用, 采用热氧化法制备了热氧化处理的BDS(TO-BDS); 通过场发射透射电子显微镜、 X射线光电子能谱仪和Zeta电位仪等表征了TO-BDS的形貌、 组成和分散性, 并与BDS进行了对比; 利用球-盘往复摩擦磨损试验机、 3D激光扫描显微镜、 场发射扫描电子显微镜、 光学法接触角/界面张力仪和拉曼光谱仪考察了含TO-BDS的纯水(H2O)的摩擦磨损性能和润滑机理. 结果表明, TO-BDS表面的含氧官能团和负电荷比BDS更多, 从而导致TO-BDS在H2O中具有更好的分散性; 在H2O中添加质量分数为0.2%的TO-BDS, 可显著改善H2O的减摩抗磨性能. 这主要是因为在摩擦过程中, TO-BDS起到滚动轴承的功效, H2O+TO-BDS比H2O在摩擦副表面的润湿性能更好, 更易于形成润滑膜且TO-BDS会因摩擦力诱导剥离产生石墨片, 从而降低摩擦磨损.  相似文献   

16.
The graphene-based semi-solid grease with low friction coefficient was prepared by highly dispersed mixing method.The friction testing result showed that the friction coefficient of the graphene oxidebased semi-solid grease reduced from ca.0.105 of graphite-based one to ca.0.075,approximately 30%decreasing.Further,the graphene-based semi-solid grease shows the more outstandingly lubricating property,and the friction coefficient approximately drops to the range of between 0.04 and 0.06.By comparing with the graphite-based grease,the friction coefficient decreases about 40%–60% and the wear reduced over 50%.  相似文献   

17.
Selecting the best brake friction composite composition amongst a set of natural fibres reinforced composites using hybrid optimization method - ELECTRE (elimination and choice translating priority) II - entropy is discussed in this article. Three sets of natural fibres containing different amounts of banana, hemp, and pineapple reinforced brake friction composites were tested according to IS 2742 (part-4) regulations on a chase friction testing machine. The experimental results have been discussed in terms of seven performance defining attributes such as coefficient of friction, fade, wear, friction stability coefficient, friction recovery, friction fluctuations, and friction variability coefficient. The composite containing 5 wt% pineapple fiber exhibit the highest coefficient of friction, whereas wear performance and friction stability remain highest for 5 wt% hemp fiber based composites. The recovery performance remains highest for the composite containing 15 wt% banana fiber, while fade, friction variability, and fluctuations remain lowest for 10 wt% banana fiber reinforced composites. The tribological results indicate that the inclusion of disparate natural fibers in varying amounts may differently affect the tribological performances and therefore to choose the best brake friction composite satisfying the maximum beneficial criteria hybrid ELECTRE II- entropy optimization technique is used. Brake friction composite containing ~10 wt% banana fibers was ranked first, in meeting the desired performance tribological properties. A comparison of this optimization approach with other multi-criteria decision-making techniques is also made for validating the performance ranking of these composites.  相似文献   

18.
A novel biomimetic surface modification method utilizing mussel-inspired chemistry was used to prepare tungsten disulfide (WS2) nanocomposites, which enhanced the dispersion stability and tribological performance of WS2 in polyalkylene glycol (PAG). Herein, WS2-polydopamine-methoxypolyethylene glycol amine (WS2-PDA-MPGA) was first synthesized via mussel-inspired chemistry and used as a lubricant additive in PAG. After modification, the dispersion stability of WS2 nanosheets in PAG was obviously improved. Moreover, the tribological performance of WS2-PDA-MPGA in PAG at high temperature was evaluated by the oscillating reciprocating tribometer. Compared to pure PAG, the lubricant composition containing WS2-PDA-MPGA exhibited excellent performance in friction reduction and anti-wear properties at high temperature. The optimal tribological performance could be obtained when the percentage of additives was 0.9?wt%. The tribological results indicate that WS2-PDA-MPGA, with its good dispersion stability, has better friction reduction and anti-wear properties than does WS2 in PAG base oil. The chemical composition analysis of the wear surface indicated that a stable protective film had been formed by physical adsorption and tribo-chemical reactions. Therefore, the surface modification strategy is an effective way to improve the dispersion stability of WS2 in PAG, which can be expanded application of WS2 in the tribological field.  相似文献   

19.
《先进技术聚合物》2018,29(1):632-640
The nanocompsites of star‐shaped poly(D‐lactide)‐co‐poly(L‐lactide) stereoblock copolymers (s‐PDLA‐PLLA) with two‐dimensional graphene nanosheets (GNSs) were prepared by solution mixing method. Crystallization behaviors were investigated using differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. The results of isothermal crystallization behaviors of the nanocompsites clearly indicated that the GNS could remarkably accelerate the overall crystallization rate of s‐PDLA‐PLLA copolymer. Unique stereocomplex crystallites with melting temperature about 207.0°C formed in isothermal crystallization for all samples. The crystallization temperatures of s‐PDLA‐PLLAs shifted to higher temperatures, and the crystallization peak shapes became sharper with increasing GNS contents. The maximum crystallization temperature of the sample with 3 wt% GNS was about 128.2°C, ie, 15°C higher than pure s‐PDLA‐PLLA. At isothermal crystallization processes, the halftime of crystallization (t0.5) of the sample with 3 wt% GNS decreased to 6.4 minutes from 12.9 minutes of pure s‐PDLA‐PLLA at 160°C.The Avrami exponent n values for the nanocomposites samples were 2.6 to 3.0 indicating the crystallization mechanism with three‐dimensional heterogeneous nucleation and spherulites growth. The morphology and average diameter of spherulites of s‐PDLA‐PLLA with various GNS contents were observed in isothermal crystallization processes by polarized optical microscopy. Spherulite growth rates of samples were evaluated by using combined isothermal and nonisothermal procedures and analyzed by the secondary nucleation theory. The results evidenced that the GNS has acceleration effects on the crystallization of s‐PDLA‐PLLA with good nucleation ability in the s‐PDLA‐PLLA material.  相似文献   

20.
A reactive extrusion process was developed to fabricate polymer/graphene nanocomposites with good dispersion of graphene sheets in the polymer matrix. The functionalized graphene nanosheet (f‐GNS) activated by diphenylmethane diisocyanate was incorporated in thermoplastic polyester elastomer (TPEE) by reactive extrusion process to produce the TPEE/f‐GNS masterbatch. And then, the TPEE/f‐GNS nanocomposites in different ratios were prepared by masterbatch‐based melt blending. The structure and morphology of functionalized graphene were characterized by Fourier transform infrared, X‐ray photoelectron spectroscopy, X‐ray diffraction and transmission electron microscopy (TEM). The incorporation of f‐GNS significantly improved the mechanical, thermal and crystallization properties of TPEE. With the incorporation of only 0.1 wt% f‐GNS, the tensile strength and elongation at break of nanocomposites were increased by 47.6% and 30.8%, respectively, compared with those of pristine TPEE. Moreover, the degradation temperature for 10 wt% mass loss, storage modulus at ?70°C and crystallization peak temperature (Tcp) of TPEE nanocomposites were consistently improved by 17°C, 7.5% and 36°C. The remarkable reinforcements in mechanical and thermal properties were attributed to the homogeneous dispersion and strong interfacial adhesion of f‐GNS in the TPEE matrix. The functionalization of graphene was beneficial to the improvement of mechanical properties because of the relatively well dispersion of graphene sheets in TPEE matrix, as suggested in the TEM images. This simple and effective approach consisting of chemical functionalization of graphene, reactive extrusion and masterbatch‐based melt blending process is believed to offer possibilities for broadening the graphene applications in the field of polymer processing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号