首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of comb-like copolymer poly(styrene-co-maleic anhydride)-graft-poly(ε-caprolactone) (SMA-g-PCL, SP) with variation in PCL side chain length and side chain density were synthesized and employed as an efficient dispersant for CaCO3 suspension in organic solvent. The effects of molecular structures of comb-like copolymer on adsorption, rheological behavior, and suspension stability were investigated systemically to elucidate the governing dispersing mechanism. The molecular structures of comb-like copolymer not only significantly influenced the adsorption behavior but also the rheological behavior and suspension stability. Calculations based on the scaling law and Flory theory made a profound understanding of the impact of the molecular structure of comb-like copolymer on dispersion property. The results revealed that the steric repulsive force was enhanced by increasing of side chain length or density. However, the surface area for one molecule on CaCO3 surface was also increased for its larger radius of the hemispheres of comb-like copolymer. This led to the worse activity of adsorption. The dispersion of CaCO3 was due to the synergistic effects of adsorption and steric hindrance effect, which resulted that the comb-like copolymer with moderate length and density of side chain presented the best dispersability.  相似文献   

2.
Poly(styrene-co-maleic anhydride)-g-methoxypolyethylene glycols comb-like polymer was employed as the dispersant of CaCO3 suspensions in this paper. The comb-like polymer had much better dispersability than traditional linear polyelectrolyte. By changing the length of side chains to alter the molecular size, the dispersion of CaCO3 suspensions was greatly influenced. The absolute value of zeta potential and the adsorption density decreased with increasing the length of side chains, while the rheological and dispersion properties had a best value when using polymers with moderate length of side chain. Calculations were performed based on the scaling law and Flory theory. It was known from the calculations that by increasing the length of side chains, the molecular size and the steric repulsion were both increased. But due to the worse activity of adsorption, the comb-like polymers with longer side chains had lower adsorption amount. The dispersability was due to the cooperation of steric repulsion and adsorption, which resulted that comb-like polymers with moderate length of side chain presented the best dispersability in actual application.  相似文献   

3.
Two characteristic comb-like copolymer dispersants (PCs) with either ester (–COO–) or ether (–C–O–C–) linkages were employed to evaluate their impact on the hydration behavior of C3A–gypsum suspension. It is determined that the addition of copolymers accelerates the depletion of sulfate as well as the C3A dissolution at the C3A/gypsum molar ratio of 0.3. Besides, we highlighted a gradual slowing down of C3AH6 precipitation but an increasing formation of monosulfoaluminate phase (AFm). Moreover, a great impact of PCs chemistry and PCs adsorption behavior is noticed. It is demonstrated that PC2 with ester linkage has a stronger adsorption onto C3A–gypsum suspension, hence induces a stronger retardation of C3AH6 precipitation. It is assumed that the competitive adsorption between PCs and sulfate eventually leads to the dissolution sites of C3A are partly occupied by PCs. With a higher amount of extra sulfate released in the pore solution, it turns out that an increasing AFm precipitation and sulfate consumption appears.  相似文献   

4.
纳米CaCO3的改性、表面结构与流变行为研究   总被引:4,自引:0,他引:4  
唐艳军  李友明  胡大为 《化学学报》2007,65(20):2291-2298
采用铝锆偶联剂和棕榈酸改性纳米CaCO3 粉体. 借助 XRD, FTIR, 接触角及流变学等测试方法对纳米CaCO3 的表面结构进行表征. XRD 分析表明: 改性纳米 CaCO3保持原样品完整的体相结构, 为方解石型纳米微晶. FTIR 分析证明: 表面改性剂与纳米 CaCO3 表面是以化学键合和物理吸附方式相结合, 粒子表面存在羧基等有机官能团的红外吸收特征. 通过测定苯和水在改性纳米CaCO3粉末压片上的接触角, 计算了改性纳米 CaCO3的表面能和极性分量, 并与未改性纳米CaCO3 进行比较. 结果表明, 经表面改性, 纳米 CaCO3 的表面能和极性分量明显降低, 其在有机溶液中的吸附功增大, 界面张力大大降低; 经棕榈酸改性的纳米 CaCO3 表现出较好的亲油疏水性, 而铝锆偶联剂改性的纳米 CaCO3 同时具有亲水性和亲油性. 以液体石蜡为溶剂, 研究了表面改性对纳米CaCO3悬浮液流变行为的影响. 实验发现: 经过表面处理, 纳米 CaCO3 粉体悬浮液流变行为发生较大的变化, 稳态剪切黏度大大降低, 表现出较小的动态弹性储能模量和黏性损耗模量, 而损耗因子较大.  相似文献   

5.
A novel double-hydrophilic block copolymer (DHBC) poly(vinyl pyrrolidone)–block–poly(methacrylic acid) (PVP-b-PMAA) was synthesized via reversible addition–fragmentation chain transfer polymerization. The structure of the resulting copolymer was characterized by 1H nuclear magnetic resonance, and the molecular weight of the block copolymer was determined by gel permeation chromatography. The study of morphological control of calcium carbonate (CaCO3) has been performed in the presence of the PVP-b-PMAA block copolymer. Various morphologies of CaCO3 particles such as rhombohedral, multilayered, and aggregated with cavities can be produced by varying the copolymer concentrations. The all-obtained CaCO3 particles were calcite, which was confirmed by either X-ray diffraction or Fourier transform infrared spectra. Such calcium carbonate/polymer hybrids with complex morphologies may find valuable applications in biomimic mineralization.  相似文献   

6.
Thermal properties of acrylate and methacrylate monomers containing long-fluorocarbon chains (H(CF2)nCH2OCOCH=CH2, (FnA) and H(CF2)nCH2OCOC(CH3)=CH2, (FnMA), wheren=6, 8, 10) and their comb-like polymers have been investigated by differential scanning calorimeter (DSC) and X-ray diffraction. The comb-like polymers (PF10A and PF10MA) with sufficiently long-fluorocarbon chains showed a simple melting and crystallizing behavior. For the fusion of PF10A in 1st heating, enthalpy change H f was 18 kJ mol–1 and entropy change S f was 45 J K–1 mol–1, while for PF10MA the values H f and Sf were 5.3 kJ mol–1 and 14 J K–1 mol–1, respectively. Melted PF8A crystallized slowly, whereas PF8MA with same fluorocarbon chain and also both of PF6A and PF6MA with shorter fluorocarbon chains can hardly crystallize by the aggregation of side-chains. Effects of the length of side-chain and the flexibility of main chain on the side-chain crystallization of comb-like polymers are clear. Crystallization process of the methacrylate monomers was sensitively affected by the scanning rate of DSC measurement and the length of fluorocarbon chains.  相似文献   

7.
A novel zwitterionic polyacrylamide AMVPPS copolymer containing sulfobetaine groups was synthesized by copolymerizing acrylamide (AM) and 4-vinylpyridine propylsulfobetaine (4-VPPS) in 0.5 mol/L NaCl solution with potassium persulfate (K2S2O8) and sodium bisulfite (NaHSO3) as initiator. The structure and composition of AMVPPS copolymer were characterized by FT-IR spectroscopy, 1H NMR and elemental analyses. Thermal stability and solution properties of AMVPPS copolymer were studied by thermogravimetry analysis (TGA) and viscometry. Anti-polyelectrolyte behavior was observed and was found to be enhanced with increasing 4-VPPS content in copolymer. The flocculation performance for 2.5 g/L kaolin suspension and 2.5 g/L hematite suspension was evaluated by transmittance measurement and phase contrast microscopy. The effects of 4-VPPS content in the copolymer, intrinsic viscosity and the added salt on the flocculation performance were investigated. It was found that AMVPPS copolymer was a good flocculant for both anionic kaolin and cationic hematite suspensions and the flocculation performance of copolymer was much better than that of pure polyacrylamide (PAM). A very wide range of the optimum flocculation concentration, named as “flocculation window”, was found for both suspensions. These flocculation characteristics were mainly dependent on the charge neutralization, the intragroup conformation transition from water to NaCl solution and then the interchain bridging of the zwitterionic AMVPPS copolymer.  相似文献   

8.
Comb-like copolymer of N-phenyl maleimide and n-octadecyl vinyl ether was synthesized by conventional free radical solution polymerization. The molecular weight and molecular weight distribution were measured by GPC. The chemical composition of copolymer was characterized by FT-IR, 1H NMR and 13C NMR, and the results indicated that the obtained copolymer contained much more content of N-phenyl maleimide rather than equal molar ratio of monomer unit. The comb-like copolymer can exhibit upper critical solution temperature thermoresponsive phase behavior reversibly in N,N-dimethylformamide and some proper alcohols such as 1-butanol, 1-hexanol, etc. The effect of polymer concentration and co-solvent on thermoresponsive behavior of polymer solution was investigated, and the cloud point of polymer solution can be tuned conveniently. The high resolution 1H NMR method was used to comprehend the reversible thermoresponsive behavior in molecular level, and the results revealed that as temperature decreased the pendent long alkyl side chain aggregated and phase separation occurred at cloud point temperature; however, the mobility of main polymer chain decreased at lower temperature.  相似文献   

9.
A comb-like copolymer consisting of a poly(vinylidene fluoride-co-chlorotrifluoroethylene) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. P(VDF-co-CTFE)-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and a microphase-separated structure of the copolymer were confirmed by proton nuclear magnetic resonance (1H NMR), FT-IR spectroscopy, and transmission electron microscopy (TEM). This comb-like polymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the –OH groups of PHEA and the –COOH groups of IDA. Upon doping with phosphoric acid (H3PO4) to form imidazole–H3PO4 complexes, the proton conductivity of the membranes continuously increased with increasing H3PO4 content. A maximum proton conductivity of 0.015 S/cm was achieved at 120 °C under anhydrous conditions. In addition, these P(VDF-co-CTFE)-g-PHEA/IDA/H3PO4 membranes exhibited good mechanical properties (765 MPa of Young's modulus), and high thermal stability up to 250 °C, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively.  相似文献   

10.
In the preparation of the ABC star triblock copolymer of ethylene oxide, styrene and methyl methacrylate (MMA), the photo-induced charge-transfer complex (CTC) was used to initiate the polymerization of the third monomer MMA. The CTC was composed of the diblock copolymer of poly(ethylene oxide) (PEO) and polystyrene (PS), PEO-b i -PS, with an aromatic imino group at the conjunction point and benzophenone (BP). It was confirmed that the kinetic behavior of this macromolecular initiation system is nearly the same with a general small radical initiator: the polymerization rate R p ∝ [PEO-b i -PS]0.48[BP]0.45[MMA]0.97. Moreover, if the molecular weight of the PEO block is fixed, R p is independent of the molecular weight of the PS block.  By means of measurements of viscosity and fluorescence, it was found that the micelles of the diblock copolymer PEO-b i -PS were formed in benzene. The aromatic imino groups were located on the boundary surfaces of the micelles and were fully exposed, and so the BP and MMA molecules easily approached them and affected the charge-transfer polymerization of MMA. Received: 18 August 1998 Accepted in revised form: 25 November 1998  相似文献   

11.
The zwitterionic monomer, ethyl 3-(N,N-diallylammonio)propanephosphonate and sulfur dioxide were cyclocopolymerized in DMSO using azobisisobutyronitrile or ammonium persulfate as initiators to afford a pH-responsive polyphosphonobetaine/SO2 (PPB/SO2) copolymer. The polymers, on treatment with HCl and NaOH, gave the aqueous solutions of the corresponding cationic polyphosphononic acid (CPP) and anionic polyphosphonate (APP). The solution properties of the PPB having two pH-responsive functionalities were investigated in detail by potentiometric and viscometric techniques. Basicity constants of the amine and phosphonate groups in APP were found to be “apparent” and as such follow the modified Henderson–Hasselbalch equation. The incorporation of SO2 moiety has resulted in the decrease of basicity constant of the nitrogens in the copolymer by staggering ?2 units of log K in compare to that of the corresponding homopolymer. The basicity difference is expected to have an effect on the chelating properties of the polymers. In contrast to many polycarbo- and -sulfobetaines, the PPB was all found to be soluble in salt-free water as well as in salt (including Ca2+ and Li+)-added solutions. The PPB demonstrated ‘antipolyelectrolyte’ viscosity behavior and found to have higher viscosity values in LiCl than in NaCl or NaI.  相似文献   

12.
A novel copolymer has been prepared by free radical polymerization in dimethylformamide of 5‐dimethylamino‐1‐(β‐methacryloyloxyethylcarbamoyloxyethyl)‐N‐methylsulfonamido‐naphthalene (Dns‐Acr) and methyl methacrylate in 1:3 M ratio with azobis(isobutyronitrile) as the initiator. The structure, purity, and the chemical composition of the dansylated copolymer (Dns‐COPA) were confirmed by spectrophotometric (1HNMR, FTIR, UV/vis), thermal and analytical methods, GPC measurements, and AFM techniques. Compared with Dns‐Acr, whose fluorescence emission band appears at 510 and 430 nm (shoulder), the photoluminescence spectrum of the Dns‐COPA in DMF solution exhibited a strong fluorescence emission at 440 nm (I1), and a small shoulder at 520 nm (I2) accompanying the main signal. The emitting behavior of Dns‐COPA was investigated through a spectrofluorimetric titration experiment, the fluorescence measurements demonstrating that introduction of various acids into the solution has a significant effect upon the quenching of fluorescence. This ability of dansyl copolymer to suffer the protonation of the amino group in organic acidic phase may be exploited in sensor applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3774–3782, 2008  相似文献   

13.
The viscoelastic behavior and order-disorder transition in mixtures of a block copolymer and a midblock-associating resin were investigated. The block copolymers investigated were polystyrene-block-polysioprene-block-polystyrene (SIS) copolymers (Shell Development Company), specifically Kraton D-1107, with the block molecular weights 10,000S-120,000I-10,000S, and Kraton D-1111, with the block molecular weights 15,000S-100,000I-15,000S. The midblock-associating resin investigated was a resin polymerized from C5 hydrocarbon, referred to as Piccotac 95BHT (Hercules Inc.), which is an aliphatic hydrocarbon containing considerable amounts of cyclic structures, with a weight-average molecular weight of 1,100 and a glass transition temperature Tg of 43°C. In the investigation, mixtures of the block copolymer and Piccotac 95BHT were prepared with toluene as solvent. Temperature scans of the samples were made to obtain information on dynamic storage modulus G′, dynamic loss modulus G″, and loss tangent tan δ, using a Rheometrics dynamic mechanical spectrometer. It was found that Piccotac 95BHT decreased the plateau modulus G0N and increased the Tg of the polyisoprene midblock of the SIS block copolymer in the mixture. This experimental observation led to the conclusion that Piccotac 95BHT associates (or is compatible) with the rubbery polyisoprene midblock of the SIS block copolymer. The order-disorder transition behavior of mixtures of SIS block copolymer and Piccotac 95BHT was also investigated by a rheological technique proposed by Han and Kim (Ref. 21). The order-disorder transition temperature Tr (i.e., the temperature at which the ordered microdomain structure of the block copolymer completely disappears) of the SIS block copolymer decreased steadily with increasing amount of Piccotac 95BHT in the mixture. With the information determined on Tr, a phase diagram for the mixture was constructed, showing the boundary between the mesophase and homogeneous phase in the mixture. The phase diagram is in qualitative agreement with the theoretical predictions of Whitmore and Noolandi (Ref. 28).  相似文献   

14.
A comb-like polymer containing crystallized alkyl side chains and the intermolecular hydrogen bonds between the linking groups was fabricated by grafting long-chain fatty amine onto poly(styrene-co-acrylic acid)n (P(S-AA)n, wherein “n” denoted AA feed ratio). The chemical structures and crystallization behaviors of the comb-like polymer P(S-AA)n-g(p) (wherein “p” denoted the number of side-chain carbon atoms) were analyzed by Fourier transform infrared, gel permeation chromatography, X-ray photoelectron spectroscopy, and X-ray diffractometer, differential scanning calorimetry, atomic force microscopy, respectively. It was found that the lamellar morphology could be generated by controlling the grafting density and side chain length of P(S-AA)n-g(p). Moreover, it was identified that the hydrogen bonds between amide groups could enhance the crystallinity and then adjust the interlamellar spacing of lamellar phase. As a result, P(S-AA)70-g(18) with the highest degree of crystallinity and closely packed lamellar morphology showed a good gas-barrier performance, and the nitrogen permeability reached 1.78 × 10?14 cm3·cm/cm2·s·Pa. Furthermore, the permeation switch of the obtained comb-like polymer could reach 500 times traversing the melting point.  相似文献   

15.
In this study, colloidal systems with SiO2 nanoparticle as viscosity modifier additive were synthesized in the lubricating oil via an in situ Stober sol-gel method. The fluid characters of lubricating oil and viscosity variation were carefully investigated via rheological methods. The results showed that the lubricating oil transformed from Newtonian fluid to non-Newtonian fluid with increasing the concentration of nanoparticles, and smaller particles displayed better thickening effect toward lubricating oil. For the system with highly concentrated nanoparticle (20?wt%), the rheological behavior mainly depends on the size of nano-SiO2. The lubricating oil with smaller nano-SiO2 particles displayed higher structural strength and response rate, resulting in good recoverability after high-speed shear. The viscosity changed with temperature and also displayed a thermo-responsive behavior, which significantly alleviated the effect of shear thinning on the viscosity under high temperature. This study presented a new strategy for effectively tuning the fluid characters and modifying the viscosity of lubricating oils by adding highly concentrated inorganic nanoparticles.  相似文献   

16.
Aiming to develop new dielectric polymers containing CN and F groups with strong dipole moments, a novel copolymer of acrylonitrile (AN) and 2,2,2-trifluoroethyl acrylate (ATRIF) was synthesized in acetonitrile by free radical process as well as the respective homopolymer (poly(ATRIF)). The copolymer’s composition and microstructure were analyzed by FTIR, 1H and 13C NMR spectroscopy and SEC. The molar incorporation of AN determined in the copolymer by NMR was 58 mol%. Thermogravimetric analysis of poly(AN-co-ATRIF) copolymer showed good thermal stability comparatively to the fluorinated homopolymer.Both copolymer, poly(AN-co-ATRIF), and homopolymer, poly(ATRIF), were dielectrically characterized over a frequency range from 10−1 to 106 Hz, and in a temperature range from 223 to 393 K. The dominating relaxation process detected in both materials is the α-relaxation, associated with the dynamic glass transition. A VFTH temperature dependence of the relaxation times (τ) was found for both materials, as characteristic of cooperative processes, from which the respective glass transition temperatures (Tg(τ = 100 s)) were estimated, which differ ∼40 K, the one of the copolymer being higher (307 K) in accordance to the calorimetric analysis. This effect was attributed to a higher stiffness of the backbone in the copolymer originated by the inclusion of the acrylonitrile groups. Both relaxation functions have the same breath of relaxation times allowing constructing a single master curve, indicating similar non-exponential character. A less fragile behavior was found for the copolymer. This was rationalized in a more straightforward way by the free volume approach instead from a correlation between fragility and intermolecular coupling. It was found that in the copolymer the free volume increases at a lower rate with the temperature increase. It was inferred from the VFTH temperature dependence of the dc conductivity and low values of the decoupling index that ion motion is significantly influenced by the dynamics of the α-process.  相似文献   

17.
The synthesis, rheological, and fluorescence properties of a cationic water-soluble copolymer, naphthalene-labeled cationic poly(dimethyl sulfate quaternized acrylamide/N,N-dimethylaminopropylmaleimide copolymer), poly(DSQADMAPM)/NA, are reported. When fluorescent hydrophobes (naphthyl group) are incorporated into the cationic copolymer, the photophysical response may effectively probe solution behavior on the microscopic level. The salt and pH responsiveness inherent to the cationic copolymer systems is a function of ionic group type. Experimental results indicate that IE/IM increases steadily with increases in polymer concentration and IE/IM values for a given polymer concentration are higher in salt. At low pH values, IE/IM is high and excimer emission increases as the quaternary amino groups (R4N+) are screened out. Dynamic light scattering (QELS) measurements indicate that diffusion coefficients of the cationic copolymer increase and the hydrodynamic diameters decrease with increasing salt concentration. Viscosity studies reveal that the polymer coil shrinks as salt is added. In fluorescence quenching study, the reduction in the quenching efficiency of thallium (Tl+) with salt addition can arise from enhanced compartmentalization of naphthalene labels as added electrolyte enhances intrapolymer micellization. The intrapolymer micelle is easily formed, indicating that the thallium ion has difficulty in reacting with bound naphthalenes located in the shrunk polymer coil. The cationic copolymer is depicted as an expanded polymer coil in deionized water because of intra- and interchain repulsions. Consequently, salt addition breaks down the repulsions and enhances intrapolymer micellization. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 11–19, 1998  相似文献   

18.
Pyrene-labeled functionalized ethylene-propylene (EP) copolymer was prepared by grafting 1-pyrenebutyrylhydrazine onto EP copolymer through maleic anhydride pendants. The EP copolymer contained 60 mol % ethylene; its weight-average molecular weight (Mw) was 148,000. The pyrene-labeled amide functionalized EP copolymer, PA-EP(60/40), was made to simulate the amine functionalized EP copolymers that are commonly used as dispersant additives in motor oils. UV absorption spectra, fluorescence emission and excitation spectra, and fluorescence decay profiles of the pyrene were studied to determine the copolymer conformation and dynamics in methylcyclohexane and tetrahydrofuran (THF). The pyrene fluorescence characteristics of PA-EP(60/40) were highly dependent on the solvent. The dependence of fluorescence emission intensity on the excitation wavelength was large in methylcyclohexane and moderate in THF. A frequency shift of about 2 nm was observed between the excitation spectrum obtained with the emission line at 377 nm and that at 550 nm in the methylcyclohexane solutions, but no shift was found in the corresponding tetrahydrofuran solutions. The ratios of the preexponential factors (a21/a22) of the excimer decays obtained in both methylcyclohexane and THF solutions were different from ?1.0. However, the deviation of the excimer formation process from the Birks scheme is small in THF but large in methylcyclohexane. In addition, the Huggins constants obtained from intrinsic viscosity measurements of the PA-EP(60/40) copolymer solutions suggest that copolymer aggregation occurs in methylcyclohexane but not in THF. H-bonding between two pyrene-containing pendants is apparently the main driving force for the formation of the ground state pyrene complex. THF is found to be effective in inhibiting the H-bonding formation. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The relaxation frequency of the dynamic correlation function for a diblock cyclic copolymer in solution in the zero average condition is calculated in the presence of hydrodynamic interaction. The latter is introduced through the screened Oseen tensor where the hydrodynamic screening length is used as a parameter to determine the range of screening. Substantial differences with the case of linear homopolymer are found, especially in the low q range where the dynamics are much faster and correspond to nondiffusive processes as usually is the case for copolymer systems. As the screening length decreases the dynamics approach the Rouse behavior and the minimum of the relaxation frequency shifts to lower values. The proportionality constant of the relaxation frequency in the intermediate q range Γ(q) → q3/(kB0) is also investigated as a function of the screening length. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The melt rheological behavior of an anionically polymerized styrene–butadiene–styrene (SBS) block copolymer sample (S: 7 × 103 and B: 43 × 103) was studied using a Weissenberg rheogoniometer. Highly non-Newtonian behavior, high viscosity and high elasticity, which are characteristics of ABA type block copolymers, were observed at 125°C, 140°C, and 150°C. The data at these temperatures superimposed well onto a master curve giving a constant flow activation energy. However, the data at 175°C indicated a marked change in the flow mechanism between 150°C and 175°C. At 175°C, the sample showed Newtonian behavior, negligible elasticity, and deviation from the master curve. These findings may be considered as an indication that the SBS block copolymer sample undergoes a structural change from a multiphase structure at low temperatures into a homogeneous structure at some temperature between 150°C and 175°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号