首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Mixed ligand copper(II) complexes of 2-(2-pyridylethyl)picolylamine (pepica) of [Cu(pepica)(pi-colinato)](ClO4)(H2O) and the [Cu(pepica)(L)](ClO4)2 type, where L stands for 2,2′-bipyridine (bipy), 1,10-phenanthroline, neocuproine, and ethylenediamine, and dipicolylamine(dipica) of the [Cu(dipica)(L)](ClO4)2(H2O) n type, where L for 2,2′-bipyridine (n = 0), 1,10-phenanthroline (phen, n = 0), and neocuproine (n = 1), have been synthesized and characterized by elemental analyses, and IR, electronic and EPR spectroscopic measurements. The molecular structures of [Cu(pepica)(bipy)](ClO4)2 (1) and [Cu(dipica)(phen)](ClO4)2 (2) have been determined using three dimensional X-ray diffraction data. Complex 1 consists of discrete distorted square pyramidal [Cu(pepica)(bipy)] cations, with a meridional pepica ligand and one of the pyridine rings of the bipy ligand forming a basal plane. The other pyridine nucleus of the bipy is bound at the apex having an elongated bond distance of 2.255 Å and tilted off the normal z axis by ~15°. Complex 2 comprises discrete distorted trigonal bipyramidal [Cu(dipica)(phen)] cations, with the two pyridine nuclei of the dipica ligand and one of the pyridine rings of the phen forming an equatorial trigonal plane and the remaining pyridine ring of the phen and the amine nitrogen of the dipica on the axial sites. The trigonal bipyramidal cation, distorted toward a square pyramidal structure, has an enlarged equatorial N(py)–Cu–N(py) angle of 132.4° and an elongated equatorial Cu–N(phen) bond of 2.156 Å. All of the complexes exhibit axial type EPR spectra. Gaussian resolved d-d spectra for these complexes, except the dipica-bipy and dipicaphen ones, yield an orbital sequence of dx 2- y 2dz 2 > dxy > dyz dxz . The bonding properties of the tridentate and the bidentate ligands are elucidated.  相似文献   

2.
Three new copper(II) complexes with isonicotinic acid N-oxide (HL) and 1,10-phenanthroline (phen) as ligands, [Cu(L)(phen)(H2O)]2(NO3)2···2H2O (1), [Cu(L)(phen)(H2O)]2(ClO4)2···2H2O (2), and [Cu(L)(phen)Br]2- [Cu(L)(phen)(H2O)]2Br2···6H2O (3) have been synthesized and structurally characterized. The structures of all three complexes feature a Cu2 dimer formed by two Cu(II) ions interconnected by two bridging ligands. Each copper(II) ion has a distorted square pyramidal coordination geometry with elongated axial coordination by an aqua ligand or halogen anion. The isonicotinic acid N-oxide anion is bidentate, being coordinated to two Cu(II) ions through its N-O oxygen and one of its carboxylate oxygen atoms. Magnetic susceptibility measurements show a Curie–Weiss paramagnetic behavior characteristic of one unpaired electron for a copper(II) ion for all three complexes.  相似文献   

3.

Reaction of the ligand 3-(pyridin-2-yl)pyrazole (L) with Cu(ClO4)2 and CuX2 (X=Cl, Br, I) gives complexes with stoichiometry [Cu(L)2X]ClO4 (X = Cl, Br, I). The new complexes were characterized by elemental analyses and infrared and electronic spectroscopy. The crystal structure of the [Cu(L)2Br]ClO4 was determined by X-ray crystallography. The cation complex (i.e. [Cu(L)2Br]P) contains copper(II) with a distorted trigonal bipyramid geometry with a Br ligand occupying an equatorial site. The penta-coordinated metal atom is bonded to two pyridinic nitrogens, two pyrazolic nitrogens, and one bromide anion. The pyrazolic H atoms are hydrogen bonded to Br atoms, resulting in infinite hydrogen-bonded chains running in the b direction. There are π‐π stacking interactions (charge-transfer arrays) between the parallel aromatic rings belonging to adjacent chains that may help to form hydrogen bonding in the coordination geometry around Cu (II).  相似文献   

4.
The synthesis, characterization and crystal structures of substituted imidazolate bridged binuclear copper(II) complexes, [Cu2(dien)2(L)](ClO4)3, where dien = diethylenetriamine, L = imidazolate (im) ( 1 ), 2‐methylimidazolate (mim) ( 2 ) and benzimidazolate (bim) ( 3 ), are reported. The copper(II) ions of 1 — 3 posses a square planar coordination environment with dien coordinating as a tridentate ligand and the fourth position being occupied by a nitrogen atom of the bridging μ‐imidazolato group. In all three compounds the tendency to form additional long apical bonds at the copper(II) ions to the oxygen atoms of the perchlorate anions is observed. Temperature depended susceptibility data of polycrystalline samples reveal an antiferromagnetic coupling of the copper(II) atoms in 1 — 3 with J = —63.8, —75.4 and —36.8 cm—1, respectively. Significant changes for these coupling constants could not be observed for measurements on frozen aqueous solutions. ESR spectra for solids and frozen solutions are consistent with intramolecular antiferromagnetic exchange interaction between the metal ions. From the data reported it can be concluded that the predominate mechanism for transmitting exchange coupling through the imidazolate bridge is due to a σ exchange pathways.  相似文献   

5.
A series of binucleating Uganda with fully conjugated π-systems have been synthesized. Homobinuclear copper(II) complexes of the form [(Cu(dien)ClO4)2L]-(ClO4)2, where dien is diethylenetriamine and L is binucleating ligand, were prepared. Mononuclear complexes, with structure similar to that of the preceeding compounds, [Cu(dien)L′(ClO4)](ClO4) were synthesized as reference compounds. The infrared spectra, elctronic spectra and magnetic properties were studied. The inductive effect, steric effect and the effect of the length of the conjugated π-system on the magnetic exchange interaction between the two copper ions are discussed. The electrochemical properties of these complexes were investigated by cyclic voltammetry. The copper ions showed the cooperative phenomena and a quasi-reversible sequential transfer of two electrons at the same potential.  相似文献   

6.
Varying coordination modes of the Schiff base ligand H2L [5-methyl-1-H-pyrazole-3-carboxylic acid (1-pyridin-2-yl-ethylidene)-hydrazide] towards different metal centers are reported with the syntheses and characterization of four mononuclear Mn(II), Co(II), Cd(II) and Zn(II) complexes, [Mn(H2L)(H2O)2](ClO4)2(MeOH) (1), [Co(H2L)(NCS)2] (2), [Cd(H2L)(H2O)2](ClO4)2 (3) and [Zn(H2L)(H2O)2](ClO4)2 (4), and a binuclear Cu(II) complex, [Cu2(L)2](ClO4)2 (5). In the complexes 1-4 the neutral ligand serves as a 3N,2O donor where the pyridine ring N, two azomethine N and two carbohydrazine oxygen atoms are coordinatively active, leaving the pyrazole-N atoms inactive. In the case of complex 5, each ligand molecule behaves as a 4N,O donor utilizing the pyridine N, one azomethine N, the nitrogen atom proximal to the azomethine of the remaining pendant arm and one pyrazole-N atom to one metal center and the carbohydrazide oxygen atom to the second metal center. The complexes 1-4 are pentagonal bipyramidal in geometry. In each case, the ligand molecule spans the equatorial plane while the apical positions are occupied by water molecules in 1, 3 and 4 and two N bonded thiocyanate ions in 2. In complex 5, the two Cu(II) centers have almost square pyramidal geometry (τ = 0.05 for Cu1 and 0.013 for Cu2). Four N atoms from a ligand molecule form the basal plane and the carbohydrazide oxygen atom of a second ligand molecule sits in the apex of the square pyramid. All the complexes have been X-ray crystallographically characterized. The Zn(II) and Cd(II) complexes show considerable fluorescence emission while the remaining complexes and the ligand molecule are fluorescent silent.  相似文献   

7.
Abstract

The synthesis of the new ligand 1,8-bis(quinolyloxy)-3,6-dithiaoctane (1) and the corresponding Cu(II), Cu(I) and Co(II) complexes is reported. The crystal and molecular structure of the copper(II) complex, [Cu(1)](ClO4)2.3H2O, has been determined by X-ray diffraction methods. The complex crystallizes in the orthorhombic space group Fddd, with cell data Z = 16, a = 20.326(2), b = 20.879(3) and c = 28.308(4)Å. The structure consists of discrete [Cu(1)]?2+ cations separated by (structurally disordered) perchlorate anions and three lattice water molecules per cation. The coordination geometry about the copper atom is pseudo-octahedral with the quinoline nitrogen and thioether sulfur atoms at the equatorial positions and the ether oxygen atoms at the axial positions. 1H NMR line-broadening experiments indicate that electron-transfer self-exchange reactions between the copper(I) and copper(II) complexes of (1) is immeasurably slow on the NMR time-scale. The coordination chemistry of (1) is compared with its oxygen analogue, 1,8-bis(quinolyloxy)-3,6-dioxaoctane.  相似文献   

8.
Three copper(II) complexes of the polydentate N‐donor ligand [4‐(4,6‐bis(1H‐pyrazol‐1‐yl)‐1,3,5‐triazin‐2‐yl)morpholine] (L) with chlorides, nitrates, and perchlorates as anions, namely, [CuCl2(L)] · 0.5(MeCN) ( 1 ), [Cu(NO3)2(H2O)(L)] · (MeCN) ( 2 ), and [Cu(L)2](ClO4)2 · (MeCN) ( 3 ) were synthesized and structurally characterized by IR, elemental analysis and X‐ray crystallographic analysis. In these complexes, the L ligand binds the copper(II) cation in the tridentate N3 form. The coordination arrangement around the central copper(II) atom is distorted square‐pyramidal in 1 but it is distorted octahedral in 2 and 3 . The interesting noncovalent interactions such as hydrogen bonds, π–π stacking, and anion–π interactions present in the solid‐state structures are discussed. The crystal results reveal that the counteranions play important roles in determining the diverse structures of these complexes. Moreover, the PXRD, TG, DRS, and fluorescence properties of compounds 1 – 3 were investigated.  相似文献   

9.
Two copper(II) complexes type [Cu(en)X2](ClO4)2, where en = ethylenediamine and X = pyridine, 1 or imidazol, 2 have been synthesized and prepared on the bases of elemental analysis, spectroscopic and molar conductance measurements. The X‐ray crystal analysis of these complexes demonstrated that the copper(II) ions are in square planar environments through coordination by two nitrogen atoms of the ethylenediamine and two nitrogen atoms of two pyridine or imidazol molecules and the ClO4 ions are bound weakly above and below of the molecular plane. The complexes show three ions behavior in all solvents. The complexes are soluble in various solvents and are solvatochromic. The solvatochromism of the complexes were investigated by UV‐Vis spectroscopy with different solvent parameters such as DN, AN, α and β using multiple linear regression (MLR) method. The results suggested that the DN parameter of the solvent has the most contribution to the shift of the d‐d absorption band of the complex 1 but in complex 2 the DN and β have almost similar importance in the observed variation in the shift of the νmax values with solvent nature.  相似文献   

10.
New cobalt(II), copper(II) and zinc(II) complexes of Schiff base derived from D,L ‐selenomethionine and salicylaldehyde were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and biological activity. The analytical data showed that the Schiff base ligand acts as tridentate towards divalent metal ions (cobalt, copper, zinc) via the azomethine‐N, carboxylate oxygen and phenolato oxygen by a stoichiometric reaction of M:L (1:1) to form metal complexes [ML(H2O)], where L is the Schiff base ligand derived from D,L ‐selenomethionine and salicylaldehyde and M = Co(II), Cu(II) and Zn(II). 1H NMR spectral data of the ligand and Zn(II) complex agree with proposed structures. The conductivity values between 12.87 and 15.63 S cm2 mol?1 in DMF imply the presence of non‐electrolyte species. Antibacterial and antifungal results indicate that the metal complexes are more active than the ligand. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Summary Some copper(II) complexes of the type Cu(HL)X·nH2O (where H2L = benzoin thiosemicarbazone; X=NO3; Cl, Br, SCN, ClO4 or 1/2SO4; n=O–2) have been prepared and characterized. All complexes have tetragonally distorted octahedral stereochemistry except the sulphatocomplex which is square pyramidal. The i.r. spectra reveal that HL acts as a monobasic tridentate ligand coordinating through the azine group nitrogen atom, thiocarbonyl sulphur atom and hydroxylic oxygen atom while NO3, Cl, Br and ClO4 act as terminal monodentate ligands and SCN and SO4 act as bidentate bridging ligands. The polycrystalline e.s.r. spectra suggest tetragonal symmetry for the copper(II) ion, involving a dx 2–y2 ground state.  相似文献   

12.
Three novel chiral Schiff Base ligands (H2L) were prepared from the condensation reaction of 3‐formyl acetylacetone with the amino acids L ‐alanine, L ‐phenylalanine, and L ‐threonine. X‐ray single crystal analyses revealed that the Schiff Base compounds exist as enamine tautomers in the solid state. The molecular structure of the compounds is stabilized by an intramolecular hydrogen bridge between the enamine NH function and a carbonyl oxygen atom of the pentandione residue. Treatment of the ligands H2L with copper(II) actetate in the presence of pyridine led to the formation of copper complexes [CuL(py)]. In each of the complexes the copper atoms adopt a distorted square‐pyramidal coordination. Three of the basal coordination sites are occupied by the doubly deprotonated Schiff Bases L2– which act as tridentate chelating O, N, O‐ligands. The remaining coordination sites are occupied by a pyridine ligand at the base and a carboxyl oxygen atom of a neighboring complex at the apical position. The latter coordination is responsible for a catenation of the complexes in the solid state.  相似文献   

13.
Tetradentate Schiff-base carboxylate-containing ligands, bis(2-pyridylmethyl)amino-5-valeric acid (Hpmva) and bis(2-pyridylmethyl)amino-6-caproic acid (Hpmca), react with copper(II) perchlorate to give rise to the carboxylated bridged chain complexes {[Cu(μ-pmva)(H2O)](ClO4)}n (1) and {[Cu(μ-pmca)(H2O)](ClO4)}n (2). These complexes have been characterized by X-ray crystallography, spectroscopic, and variable-temperature magnetic susceptibility measurements. In 1 and 2, each of the copper(II) ions exhibit CuN3O2 coordination environments with the three nitrogen atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal position and a water molecule coordinated in the axial position. The electronic spectra of the complexes are significantly affected by the coordination geometry. Magnetic susceptibility measurements indicate that complexes exhibit very weak ferromagnetic interactions.  相似文献   

14.
One novel copper(II) complex [Cu(L)(4,4′-bipy)](ClO4) (1), (where L: tridentate Schiff base derived from salicylaldehyde and L-serine) has been synthesised and characterised by spectroscopic and electrochemical studies. The single-crystal structure of the complex was determined. The crystal structure features the presence of [Cu(L)(4,4′-bipy)]+ cations and ClO4 anions aggregated by hydrogen bonding. Here, 4,4′-bipyridine functions as a monodentate ligand, which appears to be an unusual phenomenon.  相似文献   

15.
The binuclear metal complex [Cu(μ-exoO2)cyclamCu(bpy)](ClO4)2·H2O (bpy?=?2,2′-bipyridine and (exoO2)cyclam?=?1,4,8,11-tetraazacyclotradecanne-2,3-dione) has been synthesized and characterized by single-crystal X-ray analysis and spectroscopic and magnetic measurements. The structure consists of homobinuclear [Cu(μ-exoO2)cyclamCu(bpy)]2+ cations, a weakly coordinated water molecule and perchlorate ions. In each binuclear unit, Cu1, coordinated by four nitrogen atoms of the macrocyclic organic ligand is connected to Cu2 via the exo-cis oxygen atoms of the macrocyclic ligand with Cu···Cu separations of 5.151?Å; Cu2 assumes square-pyramidal geometry. Magnetic properties measured at 2–300?K show antiferromagnetic exchange between adjacent copper(II) ions.  相似文献   

16.
Three copper(II) Schiff-base complexes, [Cu(L1)(H2O)](ClO4) (1), [Cu(L2)] (2) and [Cu(L3)] (3) have been synthesized and characterized [where HL1 = 1-(N-ortho-hydroxy-acetophenimine)-2-methyl-pyridine], H2L2 = N,N′-(2-hydroxy-propane-1,3-diyl)-bis-salicylideneimine and H2L3 = N,N′-(2,2-dimethyl-propane-1,3-diyl)-bis-salicylideneimine]. The structure of complex 1 has been determined by single crystal X-ray diffraction analysis. In complex 1, the copper(II) ion is coordinated to one oxygen atom and two nitrogen atoms of the tridentate Schiff-base ligand, HL1. The fourth coordination site of the central metal ion is occupied by the oxygen atom from a water molecule. All the complexes exhibit high catalytic activity in the oxidation reactions of a variety of olefins with tert-butyl-hydroperoxide in acetonitrile. The catalytic efficacy of the copper(II) complexes towards olefin oxidation reactions has been studied in different solvent media.  相似文献   

17.
Complex [Cu(2,2′‐bipy)(H2L1)] (ClO4)2(1) has been synthesized by the self‐assembly of Cu(ClO4)2 with a rigid ligand 2,2′‐bipyridine and a flexible potential tetradentate ligand N, N'‐bis(hydroxyethyl)ethylenediamine (H2L1). Crystal analyses reveal that the potentially tetradentate ligand H2L1 acts in a tridentate mode by the coordination of one hydroxyl oxygen atom and two amino nitrogen atoms. The Cu(II) atom coordinates additionally with two bipyridyl nitrogen atoms, giving a distorted square pyramidal geometry. Each complex molecule is connected with four surrounding molecules along the ac plane by multiple hydrogen bonds, leading to 2D sheets constituted with 0.7874 nm × 1.0891 nm metallomacrocyclic rectangles. Each vertex of the rectangle is occupied by a copper atom, and the four sides are comprised of multiple hydrogen bonds.  相似文献   

18.
A tetra-nuclear, heterometallic copper(II)-cadmium(II) complex, [{CuL(H2O)}2(CuL)Cd](ClO4)2·H2O (1) has been synthesized by reacting the “ligand complex” [CuL] with Cd(ClO4)2 where H2L is the tetradentate di-Schiff base derived from 1,3-propanediamine and 2-hydroxyacetophenone. Complex 1 transforms into a trinuclear species, [(CuL)2Cd(NCS)2] (2) on treatment with an ammonium thiocyanate solution. Both complexes have been characterized by X-ray single crystal structure analyses. In both structures, the central Cd(II) ion has a six-coordinate distorted octahedral environment being bonded to six oxygen atoms from three Cu(II) units in 1 and to four oxygen atoms from two [CuL] units along with a couple of thiocyanate nitrogen atoms in complex 2. Complex (1) exhibits reversible reductive (Cu(II)/Cu(I); Epc, −1.03 V) and oxidative (Cu(II)/Cu(III); Epa, +1.04 V, respectively) responses in cyclic voltammetry. The generated Cu(I) species for both the complexes are unstable and undergo disproportionation.  相似文献   

19.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A binuclear complex {[Mn(bpy)2(CuL)(H2O)2](ClO4)2} (2) and its CuL (1) precursor (H2L?=?2,3-dioxo-5,6?:?14,15-dichlorobenzo-7,13-diphenyl-1,4,8,12-tetraazacyclo-pentadeca-7,12-diene; bpy?=?2,2′-dipyridyl) have been synthesized and characterized structurally. Complex 1 consists of the neutral [CuL] fragments and methanol molecules. In complex 2, [Mn(bpy)2(CuL)]2+ cation, two water molecules and two perchloric anions make up of the crystal. Mn(II) is coordinated by four nitrogen atoms from two 2,2′-dipyridyl and two oxygen atoms from the Cu(II) precursor. Magnetic characterization of 2 exhibits an antiferromagnetic interaction between Cu(II) and Mn(II) ions, with J?=??74.1?cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号