首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, Ce(IV)–Y, Cu(II)–Y and Cu(II)–Ce(IV)–Y adsorbents were prepared by the liquid-phase ion-exchange Y zeolites with combined Cu and Ce ions at low temperature and room pressure. The adsorbents were characterized by means of X-ray diffraction, N2-adsorption specific surface area measurements (BET), X-ray photoelectron spectroscopy, Pyridine adsorption infrared spectroscopy and Fourier transform infrared. The adsorptive desulfurization properties of these three adsorbents were studied in a fixed-bed unit through a model gasoline which made up of 1-octane solution of the refractory sulfur compounds (Such as thiophene and benzothiophene) and a certain amount of toluene or cyclohexene. The results indicate that Cu(II)–Ce(IV)–Y bind the organic sulfur compounds through two types of adsorption modes: π-complexation and direct sulfur–adsorbent interaction. The adsorption selectivity of sulfur compounds onto Cu(II)–Ce(IV)–Y decreased in the order: benzothiophene > 2,5-dimethylthiophene > 3-methylthiophene > thiophene. The effect of competition components on the metal ion-exchanged Y zeolites for sulfur removal in the order: cyclohexene > toluene. The Cu(II)–Ce(IV)–Y possesses the high sulfur adsorption capacity similar to Cu(II)–Y and high selectivity for sulfur compounds similar to Ce(IV)–Y, which can be attributed to the synergistic interaction between Cu2+ and Ce4+.  相似文献   

2.
Hazelnut husk (HH), an agricultural waste, was converted to carbonaceous material by chemical activation using potassium acetate. The produced activated carbon (KAHHAC) was characterized by FTIR, SEM, N2 adsorption–desorption experiments, CHN elemental analysis, and determination of moisture, ash, and point of zero charge. KAHHAC was used for the batch adsorption of Cu(II) ions from aqueous solutions. Optimum pH and contact time were found to be 5.0 and 240 minutes, respectively. The adsorption equilibrium data were described well by the Langmuir equation providing 105.3?mg?g?1 Cu(II) adsorption capacity. The pseudo-second-order model successfully described the kinetic of Cu(II) adsorption by KAHHAC. The adsorbed Cu(II) onto KAHHAC was completely desorbed by 0.5?M nitric acid. In conclusion, HH activated carbon (AC) produced by the potassium acetate activation method is a very useful and efficient sorbent material for the removal of Cu(II) from aqueous solution.  相似文献   

3.
Alginate beads (ABs) immobilized with hydrous zirconium oxide (ZO) were used as a hybrid adsorbent (ZO@AB) for the effective removal of copper ions [Cu(II)] from aqueous phase. ZO@AB was characterized using X‐ray photoelectron spectroscopy to confirm the impregnation of ABs with ZO and the adsorption of Cu(II) onto ZO@AB. The maximum equilibrium sorption capacity of ZO@AB for Cu(II) was 63.1 mg·g−1 at pH 5. The Cu(II) removal rate was high at the beginning of reaction, with >90% adsorption within 24 hours, and equilibrium was achieved within 48 hours. The adsorption of Cu(II) onto ZO@AB was well described by pseudo‐second‐order kinetic model (R2 > 0.99), and the monolayer nature of sorption was supported by the Langmuir model (R2 > 0.99). The sorption process was endothermic, favorable, and spontaneous in nature. Regarding the reusability of the adsorbent, its sorption capacity remained satisfactory (>90%) throughout the 5 consecutive cycles (regeneration in 0.1 mol·L−1 HCl). The stoichiometric ratio of released calcium ions [Ca(II)] to adsorbed copper ions [Cu(II)] was approximately 1:1, confirming that ion exchange was the main mechanism for removal of Cu(II) from aqueous phase. The developed adsorbent (ZO@AB) shows promise as a candidate for the effective and selective removal of Cu(II) from aqueous phase.  相似文献   

4.
Two-stage adsorption was used for selective removal of Cu(II) and phosphate from aqueous solutions. In the first stage, adsorption of Cu(II) and phosphate on oxyhumolite (OX) was examined. The pseudo second-order equation was found to be the best fit for the kinetic adsorption data. The adsorption capacity of OX for Cu(II) and phosphate depends on the adsorption time, the equilibrium pH influences only the adsorption of Cu(II). The high adsorption efficiency (E = 95 %, pH 3.5, 0.5 g of the solid sorbent and 50 cm3 of the solution, c = 4 mmol dm?3) of OX for Cu(II) is caused by the presence of humic acids (HA). In the second stage, blast furnace slag (BFS) and activated blast furnace slag (BFS-A) were used to remove phosphates. The presence of OX in the first stage positively influences the adsorption efficiency of sorbents in the second stage due to the soluble humic compounds and residues of humic acids (HA) which support the precipitation of Ca-phosphates on BFS and the ions exchange reactions on BFS-A. Adsorption equilibrium of phosphate on both slags at 298 K can be well described by the Langmuir isotherm equation. Desorption of Cu(II) from OX was around 70 %. The presence of OX in the first stage also influences the desorption of phosphate bound in the second stage. Desorption efficiency of both slags for phosphate was about 60 %.  相似文献   

5.
Different metal-complexing ligands carrying synthetic adsorbents have been reported in the literature for heavy metal removal. We have developed a novel and new approach to obtain high metal adsorption capacity utilizing 2-methacrylamidohistidine (MAH) as a metal-complexing ligand. MAH was synthesized by using methacrylochloride and histidine. Spherical beads with an average size of 150–200 μm were obtained by the radical suspension polymerization of MAH and 2-hydroxyethylmethacrylate (HEMA) conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, p(HEMA-co-MAH) beads had a specific surface area of 17.6 m2 g−1. Synthesized MAH monomer was characterized by NMR. p(HEMA-co-MAH) beads were characterized by swelling studies, FTIR and elemental analysis. These p(HEMA-co-MAH) affinity beads with a swelling ratio of 65%, and containing 1.6 mmol MAH g−1 were used in the adsorption/desorption of copper(II) ions from metal solutions. Adsorption equilibria was achieved in ∼2 h. The maximum adsorption of Cu(II) ions onto pHEMA was ∼0.36 mg Cu(II) g−1. The MAH incorporation significantly increased the Cu(II) adsorption capacity by chelate formation of Cu(II) ions with MAH molecules (122.7 mg Cu(II) g−1), which was observed at pH 7.0. pH significantly affected the adsorption capacity of MAH incorporated beads. The observed adsorption order under non-competitive conditions was Cu(II)>Cr(III)>Hg(II)>Pb(II)>Cd(II) in molar basis. The chelating beads can be easily regenerated by 0.1 M HNO3 with higher effectiveness. These features make p(HEMA-co-MAH) beads very good candidate for Cu(II) removal at high adsorption capacity.  相似文献   

6.
In this research TiO2 sample was synthesized by a simple sol–gel method and was characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) techniques. The XRD result indicated that the obtained product was anatase titanium dioxide with high purity, the TEM image clearly showed that the particle sizes of TiO2 nanoparticles were in the range of 30–70 nm, and the measured BET surface area of the heated TiO2 nanoparticles was 147.14 m2/g. In this work, the prepared TiO2 sample was used as a new adsorbent for the adsorption of radionuclide Co(II) ions from aqueous solutions, and the influence of pH, contact time, ionic strength and temperature in the presence or absence of humic acid/fulvic acid (HA/FA) were also investigated. The experimental results indicated that the adsorption of Co(II) ions onto TiO2 was strongly pH-dependent. Based on the surface complexation, the presence of HSs enhanced the adsorption of Co(II) ions and the influence of Co(II) adsorption onto FA–TiO2 hybrids was much stronger than that of HA–TiO2 at pH values of 2.0–9.0. Adsorption of Co(II) ions onto TiO2 powder was strongly dependent on ionic strength. The adsorption process mainly occured in the first contact time of 2 h and could be fitted by a pseudo-second-order rate model. The calculated thermodynamic data indicated that the adsorption of Co(II) ions onto TiO2 was a spontaneous process and favorable at high temperatures.  相似文献   

7.
This study contains the synthesis of silica gel-immobilized calix[4]arene derivative (TR-CL[4]P) as a new sorbent and its sorption studies towards Cu (II) ion in aqueous solution. The aldehyde pointed calix[4]arene derivative 5 was synthesized and then it was immobilized onto 3-aminopropilsilica gel (APS). In batch sorption experiments, the experimental results showed that TR-CL[4]P is effective sorbent towards Cu (II) ion. Therefore, the effect of solution pH, sorption time, temperature and initial metal ion concentration onto Cu (II) sorption was investigated. Maximum Cu(II) removal was obtained at 30?°C, 30?min and pH 6.0 for TR-CL[4]P and the batch sorption capacity was found as 17.8?mg/g. The characteristics of the sorption process for Cu (II) ion were evaluated by using the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption isotherms. Also, thermodynamic parameters, i.e., ΔG, ΔS, and ΔH were calculated for the system.  相似文献   

8.
In this paper, the capture of radiocadmium (Cd(II)) by adsorption onto the titanate nanotube/iron oxide (TNT/IOM) magnetic composite as a function of contact time, pH, ionic strength, foreign cation and anion ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results indicated that the adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on ionic strength at pH <9.0, but was independent of ionic strength at pH >9.0. Outer-sphere surface complexation were the main mechanism of Cd(II) adsorption onto the TNT/IOM magnetic composite at low pH values, whereas the adsorption was mainly dominated via inner-sphere surface complexation at high pH values. The adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on foreign cation and anion ions at low pH values, but was independent of foreign cation and anion ions at high pH values. A positive effect of HA/FA on Cd(II) adsorption onto the TNT/IOM magnetic composite was found at low pH values, while a negative effect was observed at high pH values. From the results of Cd(II) removal by the TNT/IOM magnetic composite, the optimum reaction conditions can be obtained for the maximum removal of Cd(II) from water. It is clear that the best pH values of the system to remove Cd(II) from solution by using the TNT/IOM magnetic composite are 7.0–8.0. Considering the low cost and effective disposal of Cd(II)-contaminated wastewaters, the best condition for Cd(II) capture by the TNT/IOM magnetic composite is at room temperature and solid content of 0.5 g L?1. These results are quite important for estimating and optimizing the removal of Cd(II) and related metal ions by the TNT-based magnetic composite.  相似文献   

9.
The impregnation of magnetite (Mt) nanoparticle (NPs) onto Musa acuminata peel (MApe), to form a novel magnetic combo (MApe-Mt) for the adsorption of anionic bromophenol blue (BPB) was studied. The SEM, EDX, BET, XRD, FTIR and TGA were used to characterize the adsorbents. The FTIR showed that the OH and CO groups were the major sites for BPB uptake onto the adsorbent materials. The average Mt crystalline size on MApe-Mt was 21.13 nm. SEM analysis revealed that Mt NPs were agglomerated on the surface of the MApe biosorbent, with an average Mt diameter of 25.97 nm. After Mt impregnation, a decrease in BET surface area (14.89 to 3.80 m2/g) and an increase in pore diameter (2.25–3.11 nm), pore volume (0.0052–0.01418 cm3/g) and pH point of zero charge (6.4–7.2) was obtained. The presence of Pb(II) ions in solution significantly decreased the uptake of BPB onto both MApe (66.1–43.8%) and MApe-Mt (80.3–59.1%), compared to other competing ions (Zn(II), Cd(II), Ni(II)) in the solution. Isotherm modeling showed that the Freundlich model best fitted the adsorption data (R2 > 0.994 and SSE < 0.0013). In addition, maximum monolayer uptake was enhanced from 6.04 to 8.12 mg/g after Mt impregnation. Kinetics were well described by the pseudo-first order and liquid film diffusion models. Thermodynamics revealed a physical, endothermic adsorption of BPB onto the adsorbents, with ΔHo values of 15.87–16.49 kJ/mol, corroborated by high desorption (over 90%) of BPB from the loaded materials. The viability of the prepared adsorbents was also revealed in its reusability for BPB uptake.  相似文献   

10.
Cu(II)/EDTA adsorption onto TiO2 has been studied with a variation of pH, ionic strength, and type of background electrolytes. Cu(II) adsorption onto TiO2 increased as ionic strength increased when NaClO4 was used as a background electrolyte. This can be explained by the increase of exp(-FPsi/RT) as a part of the electrostatic correction within a surface complexation model. Model predictions described experimental adsorption trends. Types of background anions (ClO4, Cl, NO2, NO3, SO3, and PO4) did not affect adsorption trends and adsorption amounts of Cu(II) onto TiO2. However, different trends were observed with various types of background ions used as ionic strength in EDTA and Cu(II)-EDTA adsorption. EDTA adsorption was decreased by using Na2SO3 and Na3PO4 as background ions, while NaClO4, NaCl, NaNO2, and NaNO3 showed negligible interference on the EDTA adsorption, which matched well with model predictions. The presence Na2SO3 and Na3PO4 also interfered with Cu(II)-EDTA adsorption, to a somewhat greater extent compared to EDTA adsorption, especially at lower pH. This interference was also noted in Cu(II)-EDTA adsorption with a variation of Cu(II)-EDTA concentration at constant ionic strength (3 x 10(-3) M) by using Na2SO3 and Na3PO4, especially at lower ratios of Cu(II)-EDTA to Na2SO3 and Na3PO4. These results suggest that the ratio of Cu(II)-EDTA to Na2SO3 and Na3PO4 is an important factor for the controlling of competition between these background ions and Cu(II)-EDTA onto TiO2. Model prediction generally matched well with experimental adsorption using NaClO4, NaCl, NaNO2, and NaNO3 as backgrounds ions, while a severe deviation was observed in the presence of Na2SO3 and Na3PO4. These results suggest that the mobility of copper ions as Cu(II)-EDTA can be increased from polluted area in the presence of multivalent background ions, especially as the ratio of adsorbates/background ions decreased.  相似文献   

11.
《Comptes Rendus Chimie》2015,18(1):88-99
The performance of a microporous activated carbon prepared chemically from olive stones for removing Cu(II), Cd(II) and Pb(II) from single and binary aqueous solutions was investigated via the batch technique. The activated carbon sample was characterized using N2 adsorption–desorption isotherms, SEM, XRD, FTIR, and Boehm titration. The effect of initial pH and contact time were studied. Adsorption kinetic rates were found to be fast and kinetic experimental data fitted very well the pseudo-second-order equation. The adsorption isotherms fit the Redlich–Peterson model very well and maximum adsorption amounts of single metal ions solutions follow the trend Pb(II) > Cd(II) > Cu(II). The adsorption behavior of binary solution systems shows a relatively high affinity to Cu(II) at the activated carbon surface of the mixture with Cd(II) or Pb(II). An antagonistic competitive adsorption phenomenon was observed. Desorption experiments indicated that about 59.5% of Cu(II) and 23% of Cd(II) were desorbed using a diluted sulfuric acid solution.  相似文献   

12.
Three activated carbons have been prepared, two from oil-palm shell and one from coconut shell, by the phosphoric acid activation process. Adsorption isotherms of copper(II) were determined to evaluate and compare the performance of experimental carbons. The obtained data are fitted very well to Langmuir and Freundlich adsorption models. All prepared activated carbons show 4–7-fold high adsorption capacity (qmax 19.5–23/18.6–21?mg?g?1) than that of the commercial ones (qmax 5.6/2.9?mg?g?1) under the conducted experimental conditions. The mechanism of adsorption was evaluated from the competitive adsorption of copper(II) and calcium(II) in a binary solution depending on their behaviour as Lewis acid and assessed as inner-sphere complexation. The competitive adsorption of copper(II) with other borderline and soft metal ions was evaluated by the best scavenger using a solution of ternary solute of copper(II), nickel(II) and lead(II). The adsorption selectivity order is determined as follows: Pb?>?Cu???Ni.  相似文献   

13.
A mesoporous silica has been chemically modified with 5-mercapto-1-methyltetrazole. The newly synthesized material was characterized by powder X-ray diffraction, N2 adsorption, FT-IR, 13C-NMR spectroscopy and elemental analysis, and used to preconcentrate Pb(II) from aqueous solutions. The effect of several variables on the adsorption capacity (i.e. stirring time, pH, interfering ions, presence of other heavy metals in the medium, etc.) has been studied using batch and column techniques. The adsorption capacity of the material followed the order: Pb(II) >> Cu(II) > Cd(II) >>Mn(II) > Ni(II) > Co(II). In column experiments a pre-concentration factor of 200 was obtained for Pb(II). Spiked tap water, mineral water and river water were used for the preconcentration and determination of Pb(II) by flame atomic absorption spectrometry, and a 101–103% recovery was obtained. The limit of detection and quantification values of the method were found to be 2.22·10?6 mM and 8.20·10?6 mM, respectively. The relative standard deviation for four preconcentration experiments was found to be ≤9% in all cases.  相似文献   

14.
Pectin (Pec) and cellulose microfibers (CF) extracted from orange waste were combined to form composite beads with enhanced adsorption capacity. Such beads were extensively tested in the removal of multi-metal ions from water. A factorial design approach was conducted to establish the optimum conditions for adsorption of Cd(II), Cu(II), and Fe(II) on Pec-CF beads. Batch adsorption experiments revealed that removal efficiency of such metal ions falls in the range of 94–58% and it followed the order Fe(II) > Cu(II) > Cd(II). The maximum Cd(II), Cu(II) and Fe(II) adsorption capacities calculated from the Langmuir isotherm were 192.3, 88.5 and 98.0 mg/g, respectively. FTIR analysis suggests that the functional groups on Pec-CF beads (binding sites) favor the adsorption of such metal ions. Desorption and reuse experiments demonstrated the beads could be used for at least five consecutive adsorption/desorption cycles. Our finds suggest the Pec-CF beads can serve as an efficient adsorbent for the removal of multi-metal ions from wastewater.  相似文献   

15.
A new series of copper(II) mononuclear and copper(II)–metal(II) binuclear complexes [(H2L)Cu] ? H2O, [CuLM] ? nH2O, and [Cu(H2L)M(OAc)2] ? nH2O, n = 1–2, M = Co(II), Ni(II), Cu(II), or Zn(II), and L is the anion of dipyridylglyoxal bis(2-hydroxybenzoyl hydrazone), H4L, were synthesized and characterized. Elemental analyses, molar conductivities, and FT-IR spectra support the formulation of these complexes. IR data suggest that H4L is dibasic tetradentate in [(H2L)Cu] ? H2O and [Cu(H2L)M(OAc)2] ? nH2O but tetrabasic hexadentate in [CuLM] ? nH2O (n = 1–2). Thermal studies indicate that waters are of crystallization and the complexes are thermally stable to 347–402°C depending upon the nature of the complex. Magnetic moment values indicate magnetic exchange interaction between Cu(II) and M(II) centers in binuclear complexes. The electronic spectral data show that d–d transitions of CuN2O2 in the mononuclear complex are blue shifted in binuclear complexes in the sequences: Cu–Cu > Cu–Ni > Cu–Co > Cu–Zn, suggesting that the binuclear complexes [CuLM] ? nH2O are more planar than the mononuclear complex. The structures of complexes were optimized through molecular mechanics applying MM +force field coupled with molecular dynamics simulation. [(H2L)Cu] ? nH2O, [CuLM] ? nH2O, and the free ligand were screened for antimicrobial activities on some Gram-positive and Gram-negative bacterial species. The free ligand is inactive against all studied bacteria. The screening data showed that [CuLCu] ? H2O > [(H2L)Cu] ? H2O > [CuLZn] ? H2O > [CuLNi] ? 2H2O ≈ [CuLCo] ? H2O in order of biological activity. The data are discussed in terms of their compositions and structures.  相似文献   

16.
The pristine montmorillonite (P-Mt) was modified with sodium dodecyl benzene sulfonate (SDBS) to form SDBS montmorillonite (SDBS-Mt) for the purpose of enhancing the removal performance of Cu(II) from aqueous solution. The materials were characterized by means of XRD, SEM-EDS, BET, and FTIR to analyze the surface morphology and structure. SDBS-Mt displayed a higher adsorption capacity than P-Mt. The adsorption kinetic model and the adsorption isotherm model are depicted by the pseudo-second-order kinetic equation and the Langmuir equation, respectively. The adsorption of Cu(II) on SDBS-Mt is a spontaneous and endothermic process. The order of influence of coexisting cations on the adsorption of Cu(II) is Ni(II) > Co(II) > Zn(II). In addition, the adsorbent has great regeneration performance after five cycles of regeneration. The main mechanisms of Cu(II) adsorption by SDBS-Mt may include electrostatic attraction, ion exchange, and complexation of sulfonate groups. In brief, SDBS-Mt may be a promising, simple, and low-cost adsorbent for the treatment of Cu(II) in aqueoussolutions.  相似文献   

17.
Isotherms of adsorption of Cu(II) and Ni(II) onto solid Azraq humic acid (AZHA) were studied at different pH (2.0-3.7) values and 0.1 M NaClO4 ionic strength. The Langmuir monolayer adsorption capacity was found to range from 0.1 to 1.0 mmol metal ion/g AZHA, where Cu(II) has higher adsorptivity than Ni(II). The previously reported NICA-Donnan parameters for sorption of Cu(II) on HA fit the amount of Cu(bound) determined in the present study at pH 3.7 but underestimates those at pH values of 3.0, 2.4, and 2.0. The contribution of low affinity sites to binding of metal ions increases with decreasing pH and increasing metal ion loading. The aggregation of HA, which is facilitated by decreasing pH and increasing metal loading, may increase the ability of low-affinity sites to encapsulate metal ions. The binding of Ni(II) to HA exhibits less heterogeneity and less multidentism than that of Cu(II). AZHA loaded with Cu(II) and Ni(II) was found to be insoluble in water with no measurable amount of desorbed metal ions.  相似文献   

18.
The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H2SO4 modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin–Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (RL) indicated that chitosan–H2SO4 was favorable for Pb(II) and Cu(II) adsorption.  相似文献   

19.
A chelating resin based on modified poly (styrene‐alt‐maleic anhydride) with 3‐aminobenzoic acid was synthesized. This modified resin was further reacted by 1,2‐diaminoethane or 1,3‐diaminopropane in the presence of ultrasonic irradiation to prepare tridimensional chelating resin for the removal of heavy metal ions from aqueous solutions. The adsorption behavior of Fe(II), Cu(II), Zn(II) and Pb(II) ions was investigated by synthesized chelating resins in various pH. Among the synthesized resins, CSMA‐AB1 and CSMA‐AB2 demonstrated a high affinity for the selected metal ions compared to SMA‐AB, and the order of removal percentage changes as follow: Fe(II) > Cu(II) > Zn(II) > Pb(II). The adsorption of all metal ions in acidic medium was moderate, and it was favored at the pH value of 6 and 7. Also, the prepared resins were examined for removal of metal ions from industrial wastewater and were shown to have a very efficient adsorption in the case of Cu(II), Fe(II) and Pb(II); however, the adsorption of Zn(II) was lower than others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis and thermogravimetric analysis/derivative thermogravimetry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
唐文清 《应用化学》2009,26(7):807-810
利用废弃蛋壳为原料、尿素为添加剂,合成不同Ca/P比的碳羟基磷灰石(CHAP)用于吸附水中Cu2+,利用红外光谱、扫描电镜、能谱对CHAP样品表面化学进行了表征,考察了环境因子pH值、温度对CHAP吸附Cu2+的影响。结果表明:通过改变尿素用量可以增加CHAP的Ca/P,提高其比表面积,Ca/P越高的CHAP,吸附能力越强。在pH为7、温度40℃、反应时间为60min时, Ca/P为1.80的CHAP,其对Cu2+吸附量高达到37.66mg/g。随着CHAP的Ca/P比增大,CHAP对Cu2+吸附的固相-水分配系数也增大,对吸附量增大很有利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号