首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel poly(methylene blue)/graphene composite glassy carbon electrode was fabricated and the electrochemical behavior of maltol at the modified electrode was studied by cyclic voltammetry. In phosphate-buffered solution, the modified electrode exhibited excellent electrocatalytic activity towards the electrochemical oxidation of maltol. Under optimized conditions, the oxidation peak current showed a linear relationship with the concentrations of maltol in the ranges of 8.00?×?10?7 to 4.00?×?10?5 and 4.00?×?10?5 to 5.40?×?10?4 mol L?1, with a detection limit of 6.50?×?10?8 mol L?1. The performance of the developed method was validated in terms of linearity (r?=?0.9981 and 0.9955), recovery (97.0?99.3 %), reproducibility (relative standard deviations?≤?3.1 %, n?=?6), and robustness. The method shows excellent sensitivity, selectivity, and reproducibility and has been successfully applied to analyzing maltol in a wide variety of food products.  相似文献   

2.
Hydrophobic ionic liquid-functionalized SBA-15 modified carbon paste electrode (CPSPE) was fabricated, and its electrochemical performance was investigated by cyclic voltammetry, electrochemical impedance spectra, and chronocoulometry in K3Fe(CN)6/K4Fe(CN)6 solution. Compared with carbon paste electrode (CPE) and SBA-15 modified carbon paste electrode (CSPE), the electron transfer ability was in the sequence as: CPSPE>CSPE>CPE. Meanwhile, the electrocatalytic activity of CPSPE to catechol and hydroquinone was evaluated by cyclic voltammetry, and then, the linear concentration ranges were obtained by the amperometric detection from 2.0?×?10-5 to 3.2?×?10-4 M for catechol and 5.0?×?10-5 to 5.5?×?10-4 M for hydroquinone, with the detection limits of 5.0?×?10-7 and 6.0?×?10-7 M, respectively. The advantages of both ionic liquids and heterogeneous supports made CPSPE exhibit high electrocatalytic activity towards the redox of catechol and hydroquinone by significantly improving their reversibility and enhancing their peak currents. In addition, the present method was applied to the determination of catechol and hydroquinone in artificial wastewater sample, and the results were satisfactory.  相似文献   

3.
Cu2O nanoparticles (nano-Cu2O) modified glassy carbon electrode (GCE) was fabricated and used to investigate the electrochemical behaviour of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), chronoamperometry (CA), chronocoulometry (CC) and differential pulse voltammetry (DPV). Compared with GCE, a remarkable increase in oxidation peak current was observed. It indicates that nano-Cu2O exhibits remarkable enhancement effect on the electrochemical oxidation of 4-NP. Under the optimised experimental conditions, the oxidation peak currents were propotional to 4-NP concentration in the range from 1.0?×?10?6 to 4.0?×?10?4?mol?L?1 with a detection limit of 5.0?×?10?7?mol?L?1 (S/N?=?3). The fabricated electrode presented good repeatability, stability and anti-interference. Finally, the proposed method was applied to determine 4-NP in water samples. The recoveries for these samples were from 94.60% to 105.5%.  相似文献   

4.
A new electrode was developed by one-step potentiostatic electrodeposition (at ?2.0 V for 20 s) of Au/SiO2 nanoparticles on a glassy carbon electrode. The resulting electrode (nano-Au/SiO2/GCE) was characterized by scanning electronic microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) at the nano-Au/SiO2/GCE were thoroughly investigated. Compared to the unmodified electrode, the overpotential decreased by about 300 mV, and the current response significantly increased. These changes indicated that the modified electrode showed excellent catalytic activity in the oxidation of NADH. A linear relationship was obtained in the NADH concentration range from 1.0?×?10?6 to 1.0?×?10?4 mol?L?1. In addition, amperometric sensing of ethanol at the nano-Au/SiO2/GCE in combination with alcohol dehydrogenase and nicotinamide adenine dinucleotide was successfully demonstrated. A wide linear response was also found for ethanol in the range from 5.0?×?10?5 to 1.0?×?10?3 mol?L?1 and 1.0?×?10?3 to 1.0?×?10?2 mol?L?1, respectively. The method was successfully applied to determine ethanol in beer and biological samples.  相似文献   

5.
LaFeO3 nanoparticles of approximately 22 nm in size were synthesized and characterized by XRD and TEM. A novel glassy carbon electrode modified with LaFeO3 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.145 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. The anodic peak current (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range from 1.5?×?10?7 to 8.0?×?10?4 M. The detection limit was 3.0?×?10?8 M. The relative standard deviation of eight successive scans was 3.47% for 1.0?×?10?6 M DA. The interference by ascorbic acid was eliminated efficiently. The method was used to determine DA in dopamine hydrochloride injections and showed excellent sensitivity and recovery.  相似文献   

6.
A modified carbon paste electrode was prepared by incorporating the TiO2 nanoparticles in the carbon paste matrix. The electrochemical behavior of gallic acid (GA) is investigated on the surface of the electrode using cyclic voltammetry and differential pulse voltammetry. The surface morphology of the prepared electrode was characterized using the scanning electron microscopy. The results indicate that the electrochemical response of GA is improved significantly at the modified electrode compared with the unmodified electrode. Furthermore, the capabilities of electron transfer on these two electrodes were also investigated by electrochemical impedance spectroscopy. Under the optimized condition, a linear dynamic range of 2.5?×?10?6 to 1.5?×?10?4?mol?L?1 with detection limit of 9.4?×?10?7?mol?L?1 for GA is obtained in buffered solutions with pH 1.7. Finally, the proposed modified electrode was successfully used in real sample analysis.  相似文献   

7.
《Analytical letters》2012,45(18):3046-3057
Abstract

Nano-MnO2/chitosan composite film modified glassy carbon electrode (MnO2/CHIT/GCE) was fabricated and a DNA probe was immobilized on the electrode surface. The immobilization and hybridization events of DNA were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The EIS was applied to the label-free detection of the target DNA. The human immunodeficiency virus (HIV) gene fragment was successfully detected by this DNA electrochemical sensor. The dynamic detection range was from 2.0 × 10?11 to 2.0 × 10?6 mol/L, with a detection limit of 1.0 × 10?12 mol/L.  相似文献   

8.
Here is reported the novel determination of hydrogen peroxide by electrochemiluminescence using a chitosan–graphene composite film doped cadmium-tellurium quantum dot modified glassy carbon electrode. The cadmium-tellurium quantum dots were studied by absorption and fluorescence spectroscopy. Scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize the structure morphology of the composite matrix. The electrochemiluminescence emission was linear with the concentration of hydrogen peroxide in the range of 3.5?×?10?7 to 1.1?×?10?5?M with a determination limit of 2.1?×?10?7?M. Furthermore, the modified electrode showed excellent reproducibility and stability.  相似文献   

9.
《Analytical letters》2012,45(13):2077-2088
Abstract

An electrochemiluminescence (ECL) method for reduced nicotinamide adenine dinucleotide (NADH) was proposed by immobilizing tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)3 2+) in multiwall carbon nanotubes (MWCNTs)/Nafion composite membrane that was formed on glassy carbon electrode surface. The electrochemical and ECL behaviors of the immobilized Ru(bpy)3 2+ were investigated. The cyclic votammogram of the modified electrode in pH 7.0 phosphate buffer solution showed a couple of redox peaks at +1190 and +1060 mV at 100 mV/s. The composite film had a more open structure and a large surface area allowing faster diffusion of Ru(bpy)3 2+. The presence of MWCNTs resulted in the improved ECL sensitivity and longer‐term stability of the modified electrode. The modified electrode showed a linear response to NADH in the concentration range of 1.0×10?6 to 1.6×10?5 M with a detection limit of 8.2×10?7 M.  相似文献   

10.
Prussian blue nanoparticles (PBNPs) were prepared by a self‐assembly process on a glassy carbon electrode (GCE) modified with poly(o‐phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNP‐modified PoPD/GCE was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of the modified electrode. The PBNPs/PoPD/GCE showed electrocatalytic activity towards the oxidation of pyridoxine (PN) and was used as an amperometric sensor. The modified electrode exhibited a linear response for PN oxidation over the concentration range 3–38.5 μM with a detection limit of ca 6.10 × 10?7 M (S/N = 3) and sensitivity of 2.79936 × 103 mA M?1 cm?2 using an amperometric method. The mechanism and kinetics of the catalytic oxidation reaction of PN were investigated using cyclic voltammetry and chronoamperometry. The values of α, kcat and D were estimated as 0.36, 1.089 × 102 M?1 s?1 and 8.9 × 10?5 cm2 s?1, respectively. This sensor also exhibited good anti‐interference and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
An amperometric pesticides inhibition biosensor has been developed and used for determination of pesticides in vegetable samples. To eliminate the interference of ascorbic acid, multilayer films of polyelectrolyte (chitosan/polystyrensulfonate) were coated on the glass carbon electrode. Then, acetylcholinesterase was immobilized on the electrode based on surface-treated nanoporous ZrO2/chitosan composite film as immobilization matrix. As a modified substrate, acetylthiocholine was hydrolysed by acetylcholinesterase and produced thiocholine which can be oxidized at +700?mV vs. SCE. Pesticides inhibit the activity of enzyme with an effect of decreasing of oxidation current. The experimental conditions were optimized. The electrode has a linear response to acetylthiocholine within 9.90?×?10?6 to 2.03?×?10?3?M. The electrode provided a linear response over a concentration range of 6.6?×?10?6 to 4.4?×?10?4?M for phoxim with a detection limit of 1.3?×?10?6?M, over a range of 1.0?×?10?8 to 5.9?×?10?7?M for malathion, and over a range of 8.6?×?10?6 to 5.2?×?10?4?M for dimethoate. This biosensor has been used to determine pesticides in a real vegetable sample.  相似文献   

12.
A La3+ doped Co3O4 nanocube modified graphite screen-printed electrode (La3+-doped Co3O4 nanocube/SPE) was prepared and utilized for the sensitive voltammetric determination of bisphenol A. In comparison with an unmodified electrode, the presence of the La3+ doped Co3O4 nanocubes caused a significant enhancement in the peak current. Differential pulse voltammetry (DPV), cyclic voltammetry (CV), and chronoamperometry approaches were utilized as diagnostic methods. The modified SPE was used to determine bisphenol A concentrations in the range from 0.5 to 900.0?μM with a limit of detection equal to 6.1?×?10?8 M. Real samples were effectively analyzed with the modified electrode.  相似文献   

13.
A novel biosensor for catechol has been constructed by immobilizing polyphenol oxidase (PPO) into acetone-extracted propolis (AEP) composite modified with gold nanoparticles (GNPs) and attached to multiwalled carbon nanotube (MWCNTs) on a gold electrode surface. The propolis for AEP was obtained from honeybee colonies. Under the optimum conditions, this method could be successfully used for the amperometric determination of catechol within a concentration range of 1 × 10?6 to 5 × 10?4?M, with a detection limit of 8 × 10?7?M (S/N = 3). The effects of pH and operating potential are also explored to optimize the measurement conditions. The best response was obtained at pH?5, while an optimum ratio of signal-to-noise (S/N) was obtained at ?20?mV (versus Ag/AgCl), which was selected as the applied potential for the amperometric measurements. All subsequent experiments were performed at pH?5. Cyclic voltammetry and electrochemical impedance spectroscopy was used to characterize the PPO/CNTs/GNPs/AEP/Au biosensor. The biosensor also exhibited good selectivity, stability, and reproducibility.  相似文献   

14.
A sensitive and selective electrochemical sensor based on molecularly imprinted polymers (MIPs) was developed for caffeine (CAF) recognition and detection. The sensor was constructed through the following steps: multiwalled carbon nanotubes and gold nanoparticles were first modified onto the glassy carbon electrode surface by potentiostatic deposition method successively. Subsequently, o-aminothiophenol (ATP) was assembled on the surface of the above electrode through Au–S bond before electropolymerization. During the assembled and electropolymerization processes, CAF was embedded into the poly(o-aminothiophenol) film through hydrogen bonding interaction between CAF and ATP, forming an MIP electrochemical sensor. The morphologies and properties of the sensor were characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The recognition and determination of the sensor were observed by measuring the changes of amperometric response of the oxidation-reduction probe, [Fe(CN)6]3?/[Fe(CN)6]4?, on modified electrode. The results demonstrated that the prepared sensor had excellent selectivity and high sensitivity for CAF, and the linear range was 5.0?×?10?10?~?1.6?×?10?7?mol?L?1 with a detection limit of 9.0?×?10?11?mol?L?1 (S/N?=?3). The sensor was also successfully employed to detect CAF in tea samples.  相似文献   

15.
Herein, a poly(L-tryptophan) modified glassy carbon electrode (Ptry/GCE) for the determination of maltol is fabricated by electrochemical polymerisation. The electrochemical behaviour of maltol at the Ptry/GCE is studied by cyclic voltammetry (CV). The modified electrode shows excellent electrocatalytic activity towards the oxidation of maltol and the oxidation is a one-proton-one-electron process. In pH 8.0 phosphate buffer solution (PBS), the oxidation peak current of maltol shows a linear relationship with its concentration in the range from 9.00 × 10?5 to 3.75 × 10?3 mol L?1 with a correlation coefficient of 0.9972. The limit of detection is estimated to be 8.00 × 10?6 mol L?1. The novel method shows good selectivity, recovery, reproducibility and great convenience and has been satisfactorily demonstrated in real food sample analysis.  相似文献   

16.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing.
Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M.  相似文献   

17.
《Electroanalysis》2005,17(9):744-748
Magnetic nanoparticles of Fe3O4 approximately 5nm in size were synthesized and characterized by XRD and TEM. A novel gold electrode modified with Fe3O4 nanoparticles was then constructed and was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.192 V (vs. Ag/AgCl) electrode in pH 7.0 phosphate buffer solution (PB). The anodic peak currents (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range of 1.5×10?7 to 4.0×10?4 M. The detection limit (S/N=3) obtained was 3.0×10?8 M. The relative standard deviation (RSD) of 8 successive scans was 3.41% for 1.5×10?6 M DA. The interference of ascorbic acid (AA) could be eliminated efficiently. The proposed method showed excellent sensitivity and recovery.  相似文献   

18.
利用ITO基底上层层组装构建的多层内嵌银纳米粒子的磷酸钛薄膜固定了血红蛋白并且用于生物传感研究。由于银纳米粒子与磷酸钛膜的协同作用,实验中可以观察到Hb的直接电子传递。研究表明所制备的Hb-Ag-TiP/PDDA/ITO电极对H2O2响应迅速、稳定,检测限达3.3×10-6 mol·L-1。  相似文献   

19.
《Analytical letters》2012,45(16):2436-2444
The work demonstrates a simple method for sensitive detection of Ca2+ ion by electrochemical response of alizarin red S (ARS) and Ca-ARS at a gold nanoparticle modified glassy carbon electrode (GCE). In the 0.1 M KOH, a sensitive reduction peak was observed at ?0.795 V at the gold nanoparticles modified electrode. The peak currents were proportional to the concentrations of Ca2+ ion in the range of 2.0 × 10?7 M–1.2 × 10?4 M. For the different pulse voltammetry (DPV) methods, the detection limit was 2.57 × 10?8 M. The reaction mechanism was primarily determined by cyclic voltammetry, and the experimental results showed that the electrode processes were quasireversible responses of ARS and irreversible responses of ARS-Ca. In addition, the method was simple, fast, precise, and was used in the determination of calcium in blood serum with satisfactory results.  相似文献   

20.
The electrochemical behaviour of dacarbazine [5-(3,3-dimethyl-1-triazenyl) imidazole-4-carboxamide; DTIC] was investigated by Tast and differential pulse polarography (d.p.p.) at the dropping mercury electrode, by cyclic and differential pulse voltammetry at the hanging mercury drop electrode and by anodic voltammetry at the glassy carbon electrode. Calibration graphs were obtained for 2×10?8?2×10?5 M DTIC by d.p.p., for 5×10?9?1×10?5 M by adsorptive stripping voltammetry ar a hanging mercury drop electrode, and for 1?10×10?5 M by high-performance liquid chromatography with oxidative amperometric detection at a glassy carbon electrode. The methods are compared and applied to determine DTIC added to blood serum after a simple clean-up procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号