首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. We consider a reaction-diffusion equation that is homogeneous of degree one. This homogeneity is a symmetry. The dynamics is factorized into trivial evolution due to symmetry and nontrivial behavior by a projection to an appropriate hypermanifold. The resulting evolution equations are rather complex. We examine the bifurcation behavior of a stationary point of the projected system. For these purposes we develop techniques for dimension reduction similar to the Ginzburg-Landau (GL) approximation, the modulation equations. Since we are not in the classical GL situation, the remaining approximative equations have a quadratic nonlinearity and the amplitude does not scale with ε but with ε 2 where ε 2 denotes the bifurcation parameter. Moreover, the symmetry requires that not only one but two equations are necessary to describe the behavior of the system. We investigate traveling fronts for the modulation equations. This result is used to analyze an epidemic model. Received April 9, 1996; second revision received January 3, 1997; final revision received October 7, 1997; accepted January 19, 1998  相似文献   

2.
The nonlinear interactions and modulations of an n-dimensional wave and of a disturbance to a near-critical system governed by a general (n + 1)-dimensional system of equations are studied by perturbation methods. It is found that these modulations are governed by an evolution equation which is either by itself or coupled to a second equation, depending on the nature of the long wave solutions of the corresponding linearized system. When a single evolution equation exists, its leading terms are shown to give the nonlinear Schrödinger equation. Water waves and near-critical plane Poiseuille flow are discussed as examples.  相似文献   

3.
In this paper, we prove the global existence of small classical solutions to the 3D generalized compressible Oldroyd-B system. It can be seen as compressible Euler equations coupling the evolution of stress tensor τ. The result mainly shows that singularity of solutions to compressible Euler equations can be prevented by the coupling of viscoelastic stress tensor. Moreover, unlike most complex fluids containing compressible Euler equations, the irrotational condition ∇×u=0 would not be proposed here to achieve the global well-posedness.  相似文献   

4.
A viability theorem of stochastic semilinear evolution equations is discussed under a dissipative condition in terms of uniqueness functions and a stochastic subtangential condition. Our strategy is to interpret a stochastic viability problem into a characterization problem of evolution operators associated with stochastic semilinear evolution equations. The main theorem is a generalization of the results due to Aubin and Da Prato in the case of stochastic differential equations in ℝ d .  相似文献   

5.
The hierarchies of evolution equations associated with the spectral operators ?x?y ? R?y ? Q and ?x?y ? Q in the plane are considered. In both cases a recursion operator Ф12, which is nonlocal and generates the hierarchy, is obtained. It is shown that only in the first case does the recursion operator satisfy the canonical geometrical scheme in 2 + 1 dimensions proposed by Fokas and Santini. The general procedure proposed allows one to derive, at the same time, the evolution equations associated with a given linear spectral problem and their Backlund transformations (if they exist), with no need to verify by long and tedious computations the algebraic properties of Ф12. Two equations in the first hierarchy can be considered as two different integrable generalizations in the plane of the dispersive long wave equation. All equations in this hierarchy are shown to be both a dimensional reduction of bi-Hamiltonian n × n matrix evolution equations in multidimensions and a generalization in the plane of bi-Hamiltonian n × n matrix evolution equations on the line.  相似文献   

6.
The method of fixed domains is applied to derive conditions which ensure unique solvability of boundary-value problems for a system of nonlinear evolution equations with a partially free boundary.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 65, pp. 83–92, 1988.  相似文献   

7.
Orbits of charged particles under the effect of a magnetic field are mathematically described by magnetic geodesics. They appear as solutions to a system of (nonlinear) ordinary differential equations of second order. But we are only interested in periodic solutions. To this end, we study the corresponding system of (nonlinear) parabolic equations for closed magnetic geodesics and, as a main result, eventually prove the existence of long time solutions. As generalization one can consider a system of elliptic nonlinear partial differential equations (PDEs) whose solutions describe the orbits of closed p-branes under the effect of a “generalized physical force”. For the corresponding evolution equation, which is a system of parabolic nonlinear PDEs associated to the elliptic PDE, we can establish existence of short time solutions.  相似文献   

8.
We consider a coupling between the Nernst-Planck equations and the Navier-Stokes system; we study the stationary and the evolution problems. The crucial property turns out to be the existence of an invariant region. An asymptotic result in the case of Neumann boundary conditions is also given.  相似文献   

9.
In this paper, the first of a bipartite work, we consider an abstract, nonautonomous system of evolution equations of hyperbolic type, related to semilinear wave equations. Theorem 1 states that under certain assumptions the system admits a global center manifold, or equivalently a global decoupling function which is continuously differentiable with respect to its arguments, among which timet occurs. The difficult proof is presented in part II, i.e. the continuation of the present paper. For purposes of applications a local version of Theorem 1 is proved, i.e. the local center manifold Theorem 2. We obtain a series of applications both to abstract, nonautonomous wave equations and to concrete nonautonomous, semilinear wave equations subject to Neumann and Dirichlet boundary conditions.  相似文献   

10.
We obtain theH 1-compactness for a system of Ginzburg-Landau equations with pinning functions and prove that the vortices of its classical solutions are attracted to the minimum points of the pinning functions. As a corollary, we construct a self-similar solution in the evolution of harmonic maps.  相似文献   

11.
12.
The evolution equations of Maxwell’s equations has a Lagrangian written in terms of the electric E and magnetic H fields, but admit neither Lorentz nor conformal transformations. The additional equations E=0, H=0 guarantee the Lorentz and conformal invariance, but the resulting system is overdetermined, and hence does not have a Lagrangian. The aim of the present paper is to attain a harmony between these two contradictory properties and provide a correspondence between symmetries and conservation laws using the Lagrangian for the evolutionary part of Maxwell’s equations.  相似文献   

13.
We study the large‐time behavior of (weak) solutions to a two‐scale reaction–diffusion system coupled with a nonlinear ordinary differential equations modeling the partly dissipative corrosion of concrete (or cement)‐based materials with sulfates. We prove that as t → ∞ , the solution to the original two‐scale system converges to the corresponding two‐scale stationary system. To obtain the main result, we make use essentially of the theory of evolution equations governed by subdifferential operators of time‐dependent convex functions developed combined with a series of two‐scale energy‐like time‐independent estimates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A new method for solution of the evolution of plane curves satisfying the geometric equation v=β(x,k,ν), where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ ? ?2 at the point x∈Γ, is proposed. We derive a governing system of partial differential equations for the curvature, tangential angle, local length and position vector of an evolving family of plane curves and prove local in time existence of a classical solution. These equations include a non‐trivial tangential velocity functional governing a uniform redistribution of grid points and thus preventing numerically computed solutions from forming various instabilities. We discretize the governing system of equations in order to find a numerical solution for 2D anisotropic interface motions and image segmentation problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we introduce a function set Ωm. There is a conjecture that an arbitrary explicit travelling-wave analytical solution of a real constant coefficient nonlinear evolution equation is necessarily a linear (or nonlinear) combination of the product of some elements in Ωm. A widespread applicable approach for solving a class of nonlinear evolution equations is established. The new analytical solutions to two kinds of nonlinear evolution equations are described with the aid of the guess.  相似文献   

16.
Under the constrained condition induced by the eigenfunctions and the potentials, the Lax systems of nonlinear evolution equations in relation to a matrix eigenvalue problem are nonlinearized to be a completely integrable system (R zN ,dpdq,H), while the time part of it is nonlinearized to be itsN-involutive system {F m}. the involutive solution of the compatible system (F 0), (F m) is transformed into the solution of them-th nonlinear evolution equation.  相似文献   

17.
Soliton solutions of a class of generalized nonlinear evolution equations are discussed ana-lytically and numerically. This is done by using a travelling wave method to formulate one-soliton solution and the finite difference method to the numerical solutions and the interactions betweenthe solitons for the generalized nonlinear Sehrodinger equations. the characteristic behavior of thenonlinearity admintted in the system has been investigated and the soliton states of the system in thelimit when a→Oand a→∞ have been studled. The results presented show that the soliton phe-rtomenon is charaeteristics associated with the nonlinearities of the dynamical systems.  相似文献   

18.
Mirjana Stojanovic 《PAMM》2013,13(1):367-368
Fractional differential equations have received increasing attention during recent years since the behavior of many physical systems can be properly described using the fractional order system theory. By fractional analog for Duhamel principle we give the existence-uniqueness result for linear and nonlinear time fractional evolution equations with singularities in corresponding norm in extended Colombeau algebra of generalized functions. In order to find the explicit solutions we use integral representation of the solution obtained via Laplace and Fourier transforms in succession and their inverses. We deal with some nonlinear models with singularities appearing in viscoelasticity and in anomalous processes, extending the results in viscoelasticity, continuum random walk, seismology, continuum mechanics and many other branches of life and science. The main task is finding existence-uniqueness results like in the case of evolution equations with entire derivatives. By examining the fractional evolution equations it turns out that they lead to till now known results from the evolution equations with entire derivatives in limiting case. They give more, behavior of the solution when order of derivatives are inside the intervals of entire points. In this way we can follow the influence of the operators generated by entire derivative in many fractional time evolution PDEs especially with singular initial data, and non-Lipschitz's nonlinear term. Apart from evolution equations we prove also an existence-uniqueness result for an initial value problem with singularities for linear and nonlinear fractional elliptic equation of Helmholtz type and fractional order α, where 1 < Re(α) ≤ 2, with respect to the one variable from R +. As a framework, we employ also Colombeau algebra of generalized functions containing fractional derivatives and operations among them in order to deal with the fractional equations with singularities. We apply the same techniques to the fractional Laplace and Poisson equation linear and nonlinear ones. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We propose a new approach for deriving nonlinear evolution equations solvable by the inverse scattering transform. The starting point of this approach is consideration of the evolution equations for the scattering data generated by solutions of an arbitrary nonlinear evolution equation that rapidly decrease as x±. Using this approach, we find all nonlinear evolution equations whose integration reduces to investigation of the scattering-data evolution equations that are differential equations (in either ordinary or partial derivatives). In this case, the evolution equations for the scattering data themselves are linear and moreover solvable in the finite form.  相似文献   

20.
We give a complete analysis of the long-wave–short-wave resonance equations which appear in fluid mechanics as well as plasma physics. Using the inverse-scattering technique, these equations can be reduced to a pair of linear integral equations (Marchenko equations), with the N-soliton solutions intimately related to the asymptotic state of the evolution equations. The interaction of solitons and the conserved quantities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号