首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
氨在人类的生产生活中起着重要的作用,但目前工业上合成氨广泛采用的Haber-Bosch法耗能大,且污染严重。而N_2电还原反应(ENRR)被认为是一种有效的替代方法,由于N_2的键能较高,目前仍然缺乏高活性的催化剂。在这里,通过简单的浸渍法和氧化还原法制备了多价态的MnO_x/C催化剂,该催化剂具有较高的氮还原反应活性(氨产率达到7.8μg_(NH_3)/(h·mg_(cat)),法拉第效率高达9.2%)。进一步研究表明,多价态MnO_x/C催化剂具有高氮还原反应活性的主要原因是不同价态的Mn离子(Mn~(2+)、Mn~(3+)、Mn~(4+))之间存在协同效应。  相似文献   

2.
氧还原反应是燃料电池中至关重要的一环。常规的氧还原反应催化剂是贵金属铂,但鉴于铂的高成本,研究者希望寻找一种低成本的替代催化剂,它更便宜并且具有相当于铂的催化效果。在前期研究中,已经对铁氮共掺杂石墨炔和钴氮共掺杂石墨炔进行了研究,它们均表现出了高效的氧还原反应活性,而与之具有相似电子结构的金属镍尚未研究。因此,此工作以氢取代石墨炔为基底,设计并合成了多种镍氮掺杂的石墨炔电催化剂,并进行了氧还原电化学测试,其中,镍质量分数2%并加入三聚氰胺进行烧制的镍氮掺杂石墨炔催化剂表现出最佳的氧还原电催化性能。对催化剂进行了一系列的物理表征:X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和扫描电子显微镜(SEM),进一步分析了其结构和形貌。从物理表征及电化学测试结果可以看出,氮原子是构建催化活性位点的关键,而镍原子在提高催化剂性能方面起着至关重要的作用,氮和镍的协同作用使得镍氮掺杂石墨炔催化剂表现出优异的催化性能,这使其具有良好的应用前景。  相似文献   

3.
作为析氢反应的电催化剂,富金属的过渡金属硫化物因能克服富硫金属催化剂所存在的如导电性有限和缺乏必要的纳米结构等不足,近年来受到越来越多的关注.本文介绍了具有镍黄铁矿型结构的三元富金属硫化物复合材料FexCo9-xS8和NiyCo9-yS8(x=y=0-4.5)的合成、表征及其电催化研究.首先,研究了二元钴化合物Co9S...  相似文献   

4.
雷文  肖卫平  王得丽 《电化学》2019,25(4):455-466
二氧化碳(CO2)电催化还原对于解决目前日益严重的能源危机和环境污染等问题具有重要的意义,并且能产生一定经济效益. 本文简要概述了水溶液体系中电化学还原CO2的发展现状,从铜基催化剂的结构/形貌两方面着手,介绍了近年来的最新研究进展. 最后,结合当前发展状况,从能源和经济等角度出发,对未来铜基电极材料研究进行了展望.  相似文献   

5.
邵伟  张晓东 《化学通报》2023,86(6):657-664
二氧化碳(CO2)电化学还原为高附加值化学品在解决CO2过量排放上具有极好的应用前景,但这需要开发先进的电催化剂来降低CO2活化能并提高还原产物的选择性。受益于独特的几何结构,二维材料在电催化CO2还原反应中得到了广泛研究。本综述将系统介绍应用于CO2还原反应的二维电催化剂上的最新进展。我们也将揭示特征结构与电催化性能之间的构效关系。我们希望本文可以为开发CO2还原电催化剂提供有益的指导。  相似文献   

6.
氧还原反应(ORR)是能进行能量存储的核心电化学过程。由于它的动力学速率缓慢,因此亟需制备出高活性的电催化剂来促进这一反应的速率。二维共价有机框架材料(2D COFs)的π-π堆积结构可赋予骨架高导电率,并且一维有序的孔道有利于促进中间反应体传输。因此,其在可再生能源领域中具有良好的应用前景,并有望作为能量存储与转化的强大催化平台。本文通过向2D COFs中引入金属卟啉单元及硫醚单元成功制备了两个2D COFs (JUC-600和JUC-601)。通过多种表征手段证明,这两个2D COFs均具有AA堆积的sql拓扑结构。通过电化学测试表明,Co2+配位的JUC-601具有更正的ORR起始电势(0.825 V)和半波电势(0.7 V)、更高的活性表面积(7.8 mF/cm2),更低的Tafel斜率(58 mV/dec)。这主要是由于JUC-601的高比表面积和高孔隙率使得中间产物能更易在COFs的表面和孔道中接触和传输。此外,Co2+-卟啉单元以及硫醚单元的存在使其骨架整体的电子结构发生了变化,更有利于电子转移。这一工作不仅开发了新的二维卟啉-硫醚基COFs材料,同时也拓展了2D COFs材料在电催化领域的应用。  相似文献   

7.
王尧  魏子栋 《电化学》2018,24(5):427
过渡金属氧化物(TMOs)是阴离子交换膜燃料电池最有前途的氧还原催化剂之一. 目前,TMOs的氧还原活性同铂基催化剂相比仍然有一定的差距,研究如何合成具有高催化活性的TMOs催化剂非常重要. 导电性和本征活性一直被认为是开发高性能TMOs催化剂的两个关键因素,本文着重总结与评述了近年来有关TMOs氧还原催化剂在导电性和本征活性方面的研究进展,尝试提出了未来提高TMOs氧还原催化活性的努力方向.  相似文献   

8.
Fe对Pt-Fe/C催化剂电催化氧还原反应活性的影响   总被引:1,自引:1,他引:0  
制备了用作直接甲醇燃料电池的碳载Pt-Fe(Pt-Fe/C)阴极催化剂, X射线能量色散谱(EDX)、X射线衍射谱和电化学测量的结果表明, 在Pt-Fe/C催化剂中, Fe以3种形式存在. 质量分数大约为20%的Fe进入Pt的晶格, 形成Pt-Fe合金, 质量分数大约为80%的Fe没有进入Pt的晶格而以Fe和Fe2O3的形式单独存在. 该催化剂经酸处理后, 非合金化Fe和Fe2O3被溶解, 而使Pt-Fe/C催化剂的电化学活性比表面积要比未经酸处理前的增加约30%左右, 导致Pt-Fe/C催化剂对氧还原的电催化活性优于未经酸处理前的Pt-Fe/C催化剂. 研究结果表明, Pt-Fe/C催化剂的电化学活性比表面积对氧还原的电催化活性起重要的作用, 另外, 只有与Pt形成合金的Fe能提高Pt对氧还原的电催化活性, 而非合金化的Fe对Pt催化剂对氧还原的电催化活性基本没有影响.  相似文献   

9.
郑龙珍  陶堃  熊乐艳  叶丹  韩奎  纪忆 《化学学报》2012,70(22):2342-2346
以氧化石墨烯(GO)为碳载体, K3Fe(CN)6同时作为N源和Fe源, 经热处理后构建了新型Fe/N/C结构的氧气还原催化剂. 在热处理过程中, 氧化石墨烯上的官能团分解脱离形成活性中心, Fe元素和N元素的同时掺杂是通过氧化石墨烯与K3Fe(CN)6之间的相互作用而实现的. 通过傅立叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)表征证明了这种非贵金属催化剂中N元素和Fe元素的成功掺杂, 在催化剂中N元素主要是以吡啶式氮、吡咯式氮和石墨式氮的形式存在, Fe(Ⅱ)和Fe(Ⅲ)则与其中的吡啶式氮配位形成Fe-Nx结构. 采用循环伏安法(CV)和旋转圆盘电极(RDE)技术, 研究其在碱性介质中对氧气还原反应(ORR)的电催化性能. 实验结果显示: Fe/N/C催化剂具有良好的ORR电催化活性, 在碱性溶液中的起始电位为-0.15 V, 同时有着良好的稳定性和抗甲醇性能.  相似文献   

10.
The high cost of platinum in catalyst layers hinders the commercialization of proton exchange membrane fuel cells. This Account reviews recent progress on core-shell nanostructures for oxygen reduction reaction (ORR) in acidic media, which is the cathodic reaction in fuel cells. The synthesis, characterization and evaluation of different types of core-shell electrocatalysts are summarized. Various strategies to improve the performance of core-shell electrocatalysts, including dealloying, morphology control, and surface modification are presented. The issues of mass production and fuel cell performance of core-shell electrocatalysts are also discussed.  相似文献   

11.
氨是一种重要的化肥生产原料和清洁能源载体,在工业上主要通过哈伯法合成,但该工艺反应条件苛刻,需要高温高压并消耗大量的化石能源.因此,开发能耗低、反应温和的合成氨方法,对于缓解能源和环境的双重压力具有重要的现实意义.近年来,在温和条件下通过电催化氮还原反应(NRR)合成氨有望替代哈伯法,但该技术的重点在于设计合理的电催化...  相似文献   

12.
The electrochemical reduction of nitrogen into ammonia under ambient conditions is a potential strategy for sustainable ammonia production. At present, one of the main research directions in the field of electrochemical nitrogen fixation is to improve the current efficiency and ammonia yield by developing efficient nitrogen reduction catalysts. To optimise the selectivity and catalytic activity of nitrogen reduction catalysts more efficiently, herein, we systematically summarise the progress of research on nitrogen reduction catalysts in recent years and present some general catalyst design strategies. Considering that it is difficult for metal-based catalysts to balance the competitive reactions of nitrogen activation and hydrogen evolution, we discuss in detail the advantages and application prospects of non-metallic catalysts in electrochemical nitrogen fixation. Moreover, both the design strategy of surface or interface defects, and how this atomic-level control of functionalisation helps to promote selectivity and catalytic activity are also discussed by theoretical and experimental electrochemistry. On this basis, we also discussed the future development direction, opportunities and challenges of nitrogen reduction electrocatalysts.  相似文献   

13.
Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h?1 mgcat.?1 (5350 μg h?1 mgFe?1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h?1 mgcat.?1 (51 283 μg h?1 mgFe?1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode.  相似文献   

14.
Single-atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single-atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single-atom electrocatalyst supported on low-cost, nitrogen-free lignocellulose-derived carbon. The extended X-ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe-(O-C2)4 coordination configuration. Density functional theory calculations identify Fe-(O-C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h−1 mgcat.−1 (5350 μg h−1 mgFe−1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h−1 mgcat.−1 (51 283 μg h−1 mgFe−1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode.  相似文献   

15.
16.
Rational design and constructing earth-abundant electrocatalysts for efficient electrocatalytic water splitting is a crucial challenge. Herein, we report a simple and efficient one-step electrochemical synthetic route of the NiFe2O4@FeOOH composite electrocatalyst for the oxygen evolution reaction. The unique morphology of the NiFe2O4 nanoflowers loaded on FeOOH nanosheets allows more active sites to be exposed and promote charge transfer as well as gas release, and the resulting electrode enables a current density of 10 mA cm−2 at a low overpotential of 255 mV with outstanding stability at a current density of 100 mA cm−2 for 300 h.  相似文献   

17.
电催化制氢是解决当前能源危机的重要手段之一。 研究高效稳定的非贵金属电催化剂是电催化制氢商业应用的重点。 本文通过直接高温热解双金属沸石咪唑骨架,制备了一种氮掺杂石墨炭(NC)包覆均匀分布的钴纳米颗粒电催化剂(V-Co@NC,这里V是vacancy缩写),前躯体中的Zn元素有效地防止钴纳米颗粒的聚集,并有助于生成均匀分布的钴纳米颗粒。 这种特殊的纳米结构可防止钴与电解液的直接接触,提升了其循环稳定性,同时,氮元素的掺杂提升了导电性,有利于电催化制氢性能的提升。 结果表明,所制备的V-Co@NC催化剂在酸性和碱性电解液中均具有良好的催化性能,且经过5000次循环测试后催化活性基本保持不变,具有良好的应用前景。为高活性和高选择性的电催化制氢催化剂的发展提供一种全新的途径。  相似文献   

18.
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen‐rich metal–organic framework (Zn‐MOF‐74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2RR. The NPC exhibits superior CO2RR activity with a small onset potential of ?0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at ?0.55 V vs. RHE, one of the highest values among NPC‐based CO2RR electrocatalysts. This work advances an effective and facile way towards highly active and cost‐effective alternatives to noble‐metal CO2RR electrocatalysts for practical applications.  相似文献   

19.
Electrodeposition of active catalysts on electrodes appears as a convenient approach to prepare non-noble-metal based electrocatalysts with defined micro- and nano-structures. Herein we report a new strategy of fabricating a 3-D hierarchical CuO nanocrystal array (CuO NCA) on Cu foam through a two-step sacrifice-template method. This CuO NCA possesses high conductivity, great stability, and impressive catalytic activity for oxygen evolution reaction (OER) in alkaline electrolytes. The CuO NCA can achieve a high current density of 100 mA/cm\begin{document}$^2$\end{document} at a relatively low overpotential of 400 mV for OER, which shows a better performance than other Cu-based OER catalysts and IrO\begin{document}$_2$\end{document}. The high activity of CuO NCA is well retained during a 10-h OER test at a high current density around 270 mA/cm\begin{document}$^2$\end{document}, which is about 10 times higher than the current density achieved by IrO\begin{document}$_2$\end{document} (around 25 mA/cm\begin{document}$^2$\end{document}) with the same applied overpotential. According to our best knowledge, CuO NCA is currently the most efficient and stable Cu-based electrocatalyst for water oxidation in alkaline electrolytes.  相似文献   

20.
A nanoporous (NP) PdCo alloy with uniform structure size and controllable bimetallic ratio was fabricated simply by one‐step mild dealloying of a PdCoAl precursor alloy. The as‐made alloy consists of a nanoscaled bicontinuous network skeleton with interconnected hollow channels that extend in all three dimensions. With a narrow ligament size distribution around 5 nm, the NP PdCo alloy exhibits much higher electrocatalytic activity towards the oxygen‐reduction reaction (ORR) with enhanced specific and mass activities relative to NP Pd and commercial Pt/C catalysts. A long‐term stability test demonstrated that NP PdCo has comparable catalytic durability with less loss of ORR activity and electrochemical surface area than Pt/C. The NP PdCo alloy also shows dramatically enhanced catalytic activity towards formic acid electrooxidation relative to NP Pd and Pd/C catalysts. The as‐made NP PdCo holds great application potential as a promising cathode as well as an anode electrocatalyst in fuel cells with the advantages of superior catalytic performance and easy preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号