首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In this paper, effects of two wires magnetic field on heat transfer and biomagnetic fluid flow in an aneurysm have been investigated using the ferrohydrodynamics model. Using the finite volume method and the SIMPLE algorithm, the governing equations have been discretised. Simulations have been carried out for both conditions of wires in the same and opposite directions and different magnetic numbers of 41 and 82. Results show that the magnetic field causes a decrease in heat transfer of blood flow towards the walls. Moreover, major energy loss or pressure drop, arising from mean wall shear stress, decreases but local or minor energy loss, arising from aneurysm vortexes, increases. Furthermore, risk factors of aneurysm rupture is decreased under the effect of the magnetic field. The effective contact surface between drug-coated magnetic nanoparticles and the aneurysm tissue may increase and residence time of drug on the cells of the region would decrease.  相似文献   

2.
In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.  相似文献   

3.
IntroductionThesqueezeflowofafluidbetweentwodisksorspheresisofrelevancetomanyapplications,includingtheformingofpolymermaterials ,squeezeflowrheometerandlubricationofbearings.Thesqueezeflowinteractionbetweensolidparticlesisalsofundamentaltothecomplexrhe…  相似文献   

4.
This paper explores the mathematical model for couple stress fluid flow through an annular region. The above model is used for studying the blood flow be-tween the clogged (stenotic) artery and the catheter. The asymmetric nature of the stenosis is considered. The closed form expressions for the physiological parameters such as impedance and shear stress at the wall are obtained. The effects of various geomet-ric parameters and the parameters arising out of the fluid considered are discussed by considering the slip velocity and tapering angle. The study of the above model is very significant as it has direct applications in the treatment of cardiovascular diseases.  相似文献   

5.
This paper studies the Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of the slip boundary condition. The motion of the wall is governed by the sinusoidal wave equation. The analytical and numerical solutions for the axial velocity, the micro-polar vector, the stream function, the pressure gradient, the friction force, and the mechanical efficiency are obtained by using the lubrication theory under the low Reynolds number and long wavelength approximations. The impacts of the emerging parameters, such as the coupling number, the micro-polar parameter, the slip parameter on pumping characteristics, the friction force, the velocity profile, the mechanical efficiency, and the trapping phenomenon are depicted graphically. The numerical results infer that large pressure is required for peristaltic pumping when the coupling number is large, while opposite behaviors are found for the micro-polar parameter and the slip parameter. The size of the trapped bolus reduces with the increase in the coupling number and the micro-polar parameter, whereas it blows up with the increase in the slip parameter.  相似文献   

6.
A nonlinear boundary slip model consisting of an initial slip length and a critical shear rate was used to study the nonlinear boundary slip of squeeze fluid film confined between two approaching spheres. It is found that the initial slip length controls the slip behavior at small shear rate, but the critical shear rate controls the boundary slip at high shear rate. The boundary slip at the squeeze fluid film of spherical surfaces is a strongly nonlinear function of the radius coordinate. At the center or far from the center of the squeeze film, the slip length equals the initial slip length due to the small shear rate. However, in the high shear rate regime the slip length increases very much. The hydrodynamic force of the spherical squeeze film decreases with increasing the initial slip length and decreasing the critical shear rate. The effect of initial slip length on the hydrodynamic force seems less than that of the critical shear rate. When the critical shear rate is very small the hydrodynamic force increases very slowly with a decrease in minimum film thickness. The theoretical predictions agree well with the experiment measurements.  相似文献   

7.
A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the axial shape of the stenosis can be changed easily just by varying a parameter (referred to as the shape parameter). The model is also used to study the effect of the taper angle Ф. Flow parameters such as the velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis (stenosis throat) have been computed for different values of the shape parameter n, the taper angle Ф, the coupling number N and the micropolar parameter m. It is shown that the resistance to flow decreases with increasing the shape parameter n and the micropolar parameter m while it increases with increasing the coupling number N. So, the magnitude of the resistance impedance is higher for a micropolar fluid than that for a Newtonian fluid model. Finally, the velocity profile, the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis are discussed for different values of the parameters involved on the problem.  相似文献   

8.
The paper deals with the theoretical investigation of a fundamental problem of biomaguetic fluid flow through a porous medium subject to a magnetic field by using the principles of biomagnetic fluid dynamics (BFD). The study pertains to a situation where magnetization of the fluid varies with temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid. The walls of the channel are assumed to be stretchable, where the surface velocity is proportional to the longitudinal distance from the origin of coordinates. The problem is first reduced to solving a system of coupled nonlinear differential equations involving seven parameters. Considering blood as a biomagnetic fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropriate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. The results clearly indicate that the presence of a magnetic dipole bears the potential so as to affect the characteristics of the blood flow in arteries to a significant extent during the therapeutic procedure of electromagnetic hyperthermia. The study will attract the attention of clinicians, to whom the results would be useful in the treatment of cancer patients by the method of electromagnetic hyperthermia.  相似文献   

9.
In this paper, the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined. Based on lubrication theory, the squeeze force is calculated by deriving the pressure and velocity expressions. The results of the normal squeeze force are discussed, and fitting functions of the squeeze and correction coefficients are given. The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state, respectively. Furthermore, the slip correction coefficient decreases with the increase in the velocity. The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.  相似文献   

10.
This investigation deals with the effects of slip, magnetic field, and non- Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.  相似文献   

11.
The problem of magnetohydrodynamic (MHD) flow on a moving surface with the power-law velocity and special injection/blowing is investigated. A scaling group transformation is used to reduce the governing equations to a system of ordinary differen- tial equations. The skin friction coefficients of the MHD boundary layer flow are derived, and the approximate solutions of the flow characteristics are obtained with the homotopy analysis method (HAM). The approximate solutions are easily computed by use of a high order iterative procedure, and the effects of the power-law index, the magnetic parameter, and the special suction/blowing parameter on the dynamics are analyzed. The obtained results are compared with the numerical results published in the literature, verifying the reliability of the approximate solutions.  相似文献   

12.
This paper develops a theoretical analysis of a Bingham fluid in slipping squeeze flow. The flow field decomposition consists in combining a central extensional flow zone in the plane of symmetry and shear flow zones near the plates. It is also considered that the slipping zone is located around a central sticking zone as previously shown from experiments. It is assumed that the shear stress at the plates is constant in the slipping zone and equals a fixed friction yield value. The squeeze force required to compress a Bingham fluid under the slipping behaviour as well as the radial evolution of the transition point between both sticking and slipping zones are finally determined.  相似文献   

13.
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate w...  相似文献   

14.
The paper studies numerically the slip with friction boundary condition in the time‐dependent incompressible Navier–Stokes equations. Numerical tests on two‐ and three‐dimensional channel flows across a step using this boundary condition on the bottom wall are performed. The influence of the friction parameter on the flow field is studied and the results are explained according to the physics of the flow. Due to the stretching and tilting of vortices, the three‐dimensional results differ in many respects from the two‐dimensional ones. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity.The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature.The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters.In comparison with the previously published work,the excellent agreement is shown.The effects of various parameters on the velocity,the microrotation velocity,and the temperature profiles,as well as the skin-friction coefficient and the Nusselt number,are plotted and discussed.  相似文献   

16.
A mathematical model of unsteady non‐Newtonian blood flow together with the mass transfer through constricted arteries has been developed. The mass transport refers to the movement of atherogenic molecules, i.e. blood‐borne components, such as low‐density lipoproteins from flowing blood into the arterial walls or vice versa. The flowing blood is represented as the suspension of all erythrocytes assumed to be Eringen's micropolar fluid and the arterial wall is considered to be rigid having cosine‐shaped stenosis in its lumen. The mass transfer to blood is controlled by the convection–diffusion equation. The governing equations of motion accompanied by the appropriate choice of the boundary conditions are solved numerically by Marker and Cell method and the results obtained are checked for numerical stability with the desired degree of accuracy. The quantitative analysis carried out finally includes the respective profiles of the flow‐field and the mass concentration along with their distributions over the entire arterial segment as well. The key factors, such as the wall shear stress and Sherwood number, are also examined for further quantitative insight into the flow and the mass transport phenomena through arterial stenosis. The present results show consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible,and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability,Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.  相似文献   

18.
The steady two-dimensional stagnation-point flow of a second-grade fluid with slip is examined. The fluid impinges on the wall either orthogonally or obliquely. Numerical solutions are obtained using a quasi-linearization technique.  相似文献   

19.
Effect of ion‐slip current on the thermal instability in a boundary layer is studied. The criterion on the position marking the onset of longitudinal vortices is defined in the present paper. The results show that the onset position characterized by the Grashof number depends on the Prandtl number, the Reynolds number, the wave number, the Hall parameter, the ion‐slip parameter, and the Hartmann number. The flow becomes more stable as the magnetic field increases. However, the destabilizing effects are found on the flow when the Hall and ion‐slip currents are presented. The results of the present numerical prediction show reasonable agreement with the experimental data in the case of zero Hartmann number, ion‐slip parameter, and Hall parameter in the open literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, Poiseuille flow of a polar fluid (model of a red blood cell suspension) under various boundary conditions at the wall, viz., slip or no-slip in the axial velocity and couple stresses zero or non-zero at the boundary, is considered from the point of view of its applications to blood flow. Analytic expressions for axial and rotational velocities, flow rate, effective viscosity and stresses are obtained. The magnitudes of the length ratioL and the coupling number N are determined in accordance with concentration and tube radius (in the existing literature, values ofL andN are chosen arbitrarily). Velocity profiles (both axial and rotational) and the variation of the effective viscosity with concentration, tube radius and for various values of the boundary condition parameters are shown graphically. The analytic results obtained are compared with experimental results (for blood flow). It is found that they are in a reasonably good agreement. The effective viscosity exhibits the Inverse Fahraeus-Lindquist Effect in all the cases (including the slip or no-slip in the velocity fields). A method is given for determining the non-zero couple stress boundary condition for a given concentration. Applications of this theory to blood flow are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号