首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Drug monitoring is usually performed by liquid chromatography coupled with optical detection or electrospray ionization mass spectrometry. More recently, matrix-assisted laser desorption/ionization (MALDI) in combination with triple quadrupole or Fourier-transform (FT) mass analyzers has also been reported to allow accurate quantification. Here, we present a strategy that employs standard MALDI time-of-flight (TOF) mass spectrometry (MS) for the sensitive and accurate quantification of saquinavir from an extract of blood peripheral mononuclear cells. Unambiguous identification of saquinavir in the mass spectra was possible because of using internal mass calibration and by an overall low chemical noise in the low mass range. Exact mass determination of the constant background peaks of the cell extract, which were used for recalibration, was performed by an initial MALDI-FT-MS analysis. Fast and multiplexed sample analysis was enabled by microarray technology, which provided 10 replicates in the lower nL range for each sample in parallel lanes on a chip. In order to validate the method, we employed various statistical tests, such as confidence intervals for linear regressions, three quality control samples, and inverse confidence limits of the estimated concentration ratios.
Figure
?  相似文献   

2.
High-resolution mass spectrometry (HRMS) continues to play an important role in the compositional characterization of larger organic molecules. In the field of polymer characterization, however, the application of HRMS has made only slow progress because of lower compatibility between matrix-assisted laser desorption/ionization (MALDI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS). In this study, a newly developed type of MALDI high-resolution time-of-flight mass spectrometry (TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS) was applied to the structural and compositional characterization of polymers. To create a graphical distribution of polymer components on a two-dimensional plot converted from complex mass spectra, we adopted a slightly modified Kendrick mass defect (KMD) analysis based on accurate masses determined using spiral-TOFMS. By setting the Kendrick mass scale based on the mass of the repeating units of a given polymer, components with common repeat units lined up in the horizontal direction on the KMD plot, whereas those components with different structures were shifted vertically. This combination of MALDI spiral-TOFMS measurement and KMD analysis enabled the successful discrimination of the polymer components in a blend of poly(alkylene oxide)s, the compositional analysis of poly(ethylene oxide)/poly(propylene oxide) block copolymers, and profiling of the end-group distribution of poly(ε-caprolactone)s synthesized under different conditions.
?  相似文献   

3.
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) techniques are continually being assessed with a view to improving the quality of information obtained from a given sample. A single tissue section will typically only be analyzed once by MALDI MSI and is then either used for histological staining or discarded. In this study, we explore the idea of repeat analysis of a single tissue section by MALDI MSI as a route toward improving sensitivity, structural characterization, and diversity of detected analyte classes. Repeat analysis of a single tissue section from a fresh frozen mouse brain is investigated with both α-cyano-4-hydroxycinnamic acid (CHCA) and para-nitroaniline (PNA). Repeat analysis is then applied to the acquisition of MALDI MSI and MALDI tandem mass spectrometry imaging employing collision induced dissociation (MS/MS imaging employing CID) from a formalin-fixed mouse brain section. Finally, both lipid and protein data are acquired from the same tissue section via repeat analysis utilizing CHCA, sinapinic acid (SA), and a tissue wash step. PNA was found to outperform CHCA as a matrix for repeat analysis; multiple lipids were identified using MS/MS imaging; both lipid and protein images were successfully acquired from a single tissue section.
Figure
Repeat analysis by MALDI MS imaging of a single tissue section is investigated with multiple matrices and tissue washes to provide increased molecular information from a single tissue section  相似文献   

4.
With the development of special ion conversion dynode (ICD) detectors for high-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), the mass-to-charge ratio is no longer a limiting factor. Although these detectors have been successfully used in the past, there is lack of understanding of the basic processes in the detector. We present a systematic study to investigate the performance of such an ICD detector and separate the contributions of the MALDI process from the ones of the ion-to-secondary ion and the secondary ion-to-electron conversions. The performance was evaluated as a function of the voltages applied to the conversion dynodes and the sample amount utilized, and we found that the detector reflects the MALDI process correctly: limitations such as sensitivity or deviations from the expected signal intensity ratios originate from the MALDI process itself and not from the detector.
Graphical abstract
?  相似文献   

5.
Measuring average quantities in complex mixtures can be challenging for mass spectrometry, as it requires ionization and detection with nearly equivalent cross-section for all components, minimal matrix effect, and suppressed signal from fragments and aggregates. Fragments and aggregates are particularly troublesome for complex mixtures, where they can be incorrectly assigned as parent ions. Here we study fragmentation and aggregation in six aromatic model compounds as well as petroleum asphaltenes (a naturally occurring complex mixture) using two laser-based ionization techniques: surface assisted laser desorption ionization (SALDI), in which a single laser desorbs and ionizes solid analytes; and laser ionization laser desorption mass spectrometry (L2MS), in which desorption and ionization are separated spatially and temporally with independent lasers. Model compounds studied include molecules commonly used as matrices in single laser ionization techniques such as matrix assisted laser desorption ionization (MALDI). We find significant fragmentation and aggregation in SALDI, such that individual fragment and aggregate peaks are typically more intense than the parent peak. These fragment and aggregate peaks are expected in MALDI experiments employing these compounds as matrices. On the other hand, we observe no aggregation and only minimal fragmentation in L2MS. These results highlight some advantages of L2MS for analysis of complex mixtures such as asphaltenes.
Figure
?  相似文献   

6.
Mass spectrometry imaging (MSI) allows for the direct monitoring of the abundance and spatial distribution of chemical compounds over the surface of a tissue sample. This technology has opened the field of mass spectrometry to numerous innovative applications over the past 15 years. First used with SIMS and MALDI MS that operate under vacuum, interest has grown for mass spectrometry ionization sources that allow for effective imaging but where the analysis can be performed at ambient pressure with minimal or no sample preparation. We introduce here a versatile source for MALDESI imaging analysis coupled to a hybrid LTQ-FT-ICR mass spectrometer. The imaging source offers single shot or multi-shot capability per pixel with full control over the laser repetition rate and mass spectrometer scanning cycle. Scanning rates can be as fast as 1 pixel/second and a spatial resolution of 45 μm was achieved with oversampling.
Design and integration of a versatile IR-MALDESI imaging source offering multi-shot capability with a commercial FT-ICR mass spectrometer  相似文献   

7.
The key step in high quality microbial matrix-assisted laser desorption/ionization mass spectrometry imaging (microbial MALDI MSI) is the fabrication of a homogeneous matrix coating showing a fine-grained morphology. This application note addresses a novel method to apply solid MALDI matrices onto microbial cultures grown on thin agar media. A suspension of a mixture of 2,5-DHB and α-CHCA is sprayed onto the agar sample surface to form highly homogeneous matrix coatings. As a result, the signal intensities of metabolites secreted by the fungus Aspergillus fumigatus were found to be clearly enhanced.
Figure
?  相似文献   

8.
Direct inject electrospray mass spectrometry offers minimal sample preparation and a “shotgun” approach to analyzing samples. However, complex matrix effects often make direct inject an undesirable sample introduction technique, particularly for trace level analytes. Highlighted here is our solution to the pitfalls of direct inject mass spectrometry and other ambient ionization methods with a focus on trace explosives. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry solves selectivity issues and reduces matrix effects while maintaining minimal sample preparation requirements. With appropriate solvent conditions, most explosive residues can be analyzed with this technique regardless of the nature of the substance (i.e., nitroaromatic, oxidizing salt, or peroxide).
Figure
?  相似文献   

9.
A surface-assisted laser desorption/ionization (SALDI) source is coupled to the Orbitrap mass analyzer; the instrumental approach is tested for the analysis of rhenium (Re) and osmium (Os) complexes with 8-mercaptoquinoline. Silicon (Si) material obtained by laser treatment of monocrystalline Si is used as SALDI substrate. All studied complexes are detected as radical cations, with no protonated molecules. The comparison of SALDI, matrix-assisted laser desorption/ionization (MALDI), and direct laser desorption/ionization (LDI) on metal plates in the same instrumental setup demonstrated that the detection of the studied complexes using SALDI provides the highest sensitivity. The ability to analyze samples rapidly, high purity of spectra, and good analytical parameters make SALDI coupled to the Orbitrap mass analyzer a potentially powerful tool for the detection of Re and Os complexes and related organic, UV-absorbing compounds.
Figure
?  相似文献   

10.
Triacylglycerols (TAGs), essential energy storage lipids, are easily detected by conventional MALDI MS when occurring on their own. However, their signals are easily overwhelmed by other lipids, mainly phosphatidylcholines (PCs) and, therefore, require purification. In order to profile TAGs from crude lipid mixtures without prefractionation, we investigated alternative matrixes that can suppress phospholipid ion signals and enhance cationization of TAGs. We found that an aqueous solution of citrate-capped gold nanoparticles (AuNPs) with a diameter of 12 nm is a superior matrix for the laser desorption/ionization mass spectrometry (LDI MS) of TAGs in crude lipid mixtures. The AuNP matrix effectively suppressed other lipid signals such as phospholipids and also provided 100 times lower detection limit for TAGs than 2,5-dihydroxybenzoic acid (DHB), the best conventional MALDI matrix for TAGs. The AuNP-assisted LDI MS enabled us to obtain detailed TAG profiles including minor species directly from crude beef lipid extracts without phospholipid interference. In addition, we could detect TAGs at a trace level from a total brain lipid extract.
Figure
?  相似文献   

11.
Human tumor xenografts in immunodeficient mice are a very popular model to study the development of cancer and to test new drug candidates. Among the parameters analyzed are the variations in the lipid composition, as they are good indicators of changes in the cellular metabolism. Here, we present a study on the distribution of lipids in xenografts of NCI-H1975 human lung cancer cells, using MALDI imaging mass spectrometry and UHPLC-ESI-QTOF. The identification of lipids directly from the tissue by MALDI was aided by the comparison with identification using ESI ionization in lipid extracts from the same xenografts. Lipids belonging to PCs, PIs, SMs, DAG, TAG, PS, PA, and PG classes were identified and their distribution over the xenograft was determined. Three areas were identified in the xenograft, corresponding to cells in different metabolic stages and to a layer of adipose tissue that covers the xenograft.
FIGURE
?  相似文献   

12.
The combination of ultrahigh-resolution mass spectrometry imaging (UHRMSI) and ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was used for the identification and the spatial localization of atorvastatin (AT) and its metabolites in rat tissues. Ultrahigh-resolution and high mass accuracy measurements on a matrix-assisted laser desorption/ionization (MALDI)-Orbitrap mass spectrometer allowed better detection of desired analytes in the background of matrix and endogenous compounds. Tandem mass spectra were also used to confirm the identification of detected metabolites in complex matrices. The optimization of sample preparation before imaging experiments included the tissue cryogenic sectioning (thickness 20 μm), the transfer to stainless steel or glass slide, and the selection of suitable matrix and its homogenous deposition on the tissue slice. Thirteen matrices typically used for small molecule analysis, e.g., 2,5-dihydroxybenzoic acid (DHB), 1,5-diaminonaphthalene (DAN), 9-aminoacridine (AA), etc., were investigated for the studied drug and its metabolite detection efficiency in both polarity modes. Particular matrices were scored based on the strength of extracted ion current (EIC), relative ratio of AT molecular adducts, and fragment ions. The matrix deposition on the tissue for the most suitable matrices was done by sublimation to obtain the small crystal size and to avoid local variations in the ionization efficiency. UHPLC/MS profiling of drug metabolites in adjacent tissue slices with the previously optimized extraction was performed in parallel to mass spectrometry imaging (MSI) measurements to obtain more detailed information on metabolites in addition to the spatial information from MSI. The quantitation of atorvastatin in rat liver, serum, and feces was also performed.
Figure
?  相似文献   

13.
The segregation in dried droplet MALDI sample spots was analyzed with regard to the matrix-to-sample ratio using optical microscopy, MALDI imaging mass spectrometry (MALDI MSI) and IR imaging spectroscopy. In this context, different polymer/matrix/solvent systems usually applied in the analysis of synthetic polymers were investigated. The use of typical matrix concentrations (10 mg mL?1) in almost every case resulted in ring patterns, whereas higher concentrated matrix solutions always led to homogeneous sample spot layers. The data revealed that segregation is predominantly caused by matrix transport in the drying droplet, whereas polymer segregation seems to be only secondary.
Figure
?  相似文献   

14.
An introduction to the principle and possibilities of the new method of circular dichroism laser mass spectrometry is given and its state of development is reviewed. This method allows enantiosensitive, mass-selective probing of chiral molecules. It is based on the combination of resonance-enhanced multiphoton ionization with circularly polarized light and specially modified time-of-flight mass spectrometry. As an example, application to carbonyls is presented.
Figure
The combination of resonance enhanced multiphoton ionization and circular dichroism performed in a time-of-flight mass spectrometer allows mass selective enantio-sensitive spectroscopy with new features for chiral analysis  相似文献   

15.
To analyze compounds in complicated matrixes using mass spectrometry, we describe a novel ambient ionization approach, termed paper assisted ultrasonic spray ionization (PAUSI). The ionization process is based on the ultrasonic vibration of the piezoelectric ceramic disk, on which the samples are placed. Porous materials are utilized to generate fine initial droplet, which could alleviate matrix effect during ionization process for complicated matrix. PAUSI was evaluated as an attractive tool to screen analytes from complicated matrixes, such as (1) bovine serum with NaCl 150 g/L, (2) viscous samples, and (3) biological fluid, without any sample preparation. Moreover, it provides great advantage in simplifying the mass spectrometry analysis process, and the ionization device is inexpensive and easy to operate.
Figure
?  相似文献   

16.
Until recently, atmospheric pressure photoionization (APPI) has typically been used for the determination of non-polar halogenated flame retardants (HFRs) by liquid chromatography (LC) tandem mass spectrometry. In this study, we demonstrated the feasibility of utilizing liquid chromatography atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (LC-APCI-MS/MS) for analysis of 38 HFRs. This developed method offered three advantages: simplicity, rapidity, and high sensitivity. Compared with APPI, APCI does not require a UV lamp and a dopant reagent to assist atmospheric pressure ionization. All the isomers and the isobaric compounds were well resolved within 14-min LC separation time. Excellent instrument detection limits (6.1 pg on average with 2.0 μL injection) were observed. The APCI mechanism was also investigated. The method developed has been applied to the screening of wastewater samples for screening purpose, with concentrations determined by LC-APCI-MS/MS agreeing with data obtained via gas chromatography high resolution mass spectrometry.
Figure
LC-APCI-MS/MS for analysis of halogenated flame reterdants  相似文献   

17.
We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system (Int. J. Mass Spectrom. 315, 66–73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MSn analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.
Figure
?  相似文献   

18.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is widely used for characterization of large, thermally labile biomolecules. Advantages of this analytical technique are high sensitivity, robustness, high-throughput capacity, and applicability to a wide range of compound classes. For some years, MALDI-MS has also been increasingly used for mass spectrometric imaging as well as in other areas of clinical research. Recently, several new concepts have been presented that have the potential to further advance the performance characteristics of MALDI. Among these innovations are novel matrices with low proton affinities for particularly efficient protonation of analyte molecules, use of wavelength-tunable lasers to achieve optimum excitation conditions, and use of liquid matrices for improved quantification. Instrumental modifications have also made possible MALDI-MS imaging with cellular resolution as well as an efficient generation of multiply charged MALDI ions by use of heated vacuum interfaces. This article reviews these recent innovations and gives the author’s personal outlook of possible future developments.
Figure
Figure published in Cramer, RC, Dreisewerd, K. (2007) UV Matrix‐Assisted Laser Desorption/Ionization: Principles, Instrumentation, and Applications. In: M. Gross (Ed.): Encyclopedia of Mass Spectrometry, Vol. 6, pp 646‐661, Elsevier, Oxford  相似文献   

19.
The fourth harmonic emission (200 nm) of a femtosecond Ti:sapphire laser (35 fs) was generated and used in the multiphoton ionization of 49 pesticides in gas chromatography/time-of-flight mass spectrometry. The limit of detection was improved when the ionization source from the third harmonic emission (267 nm) was replaced with the fourth harmonic emission for several pesticide molecules that contained no conjugated double bonds since their absorption bands are located in the far-ultraviolet region. This analytical instrument was used in the analysis of a series of real samples including potatoes, carrots, and cabbage, and a signal suspected to arise from di-allate was observed for the potato sample.
Figure  相似文献   

20.
Many diseases such as arthritis or atherosclerosis are accompanied by inflammatory processes. Inflammation is characterized by the infiltration of cells such as neutrophilic granulocytes and (a) the release of phospholipases [particularly phospholipase A2 (PLA2)] and (b) the generation of reactive oxygen as well as nitrogen species (ROS and RNS). While PLA2 leads to defined lyso products (lacking one acyl residue), lipid oxidation is characterized by much more complex product patterns, including lipid peroxides, aldehydes (by double bond cleavage), and many others. Nevertheless, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by the oxidation of lipids and/or free fatty acids. Therefore, lipid oxidation products as well as lysolipids are increasingly assumed to represent important disease (bio)markers. Consequently, there is also increasing interest in methods to characterize these products qualitatively and quantitatively. Mass spectrometry (MS) seems to be the method of choice to study (phospho)lipids changed under inflammatory conditions: nowadays, soft ionization MS methods are regularly used to study oxidative lipid modifications because of their high sensitivities and the tremendous mass resolutions that are achievable by using modern mass spectrometers. However, experimental care is required to be able to detect all relevant products. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are continuously increasing. This review aims to summarize the so far available data on MS analyses of oxidized lipids as well as lysolipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids and lysolipids under in vivo conditions. It is the aim of this review to provide a critical survey of the advantages and drawbacks of the different MS methods, with the focus on MALDI and ESI.
Figure
Scheme of mass spectrometric analysis to study oxidation and enzyme-modified phospholipids changed under inflammatory conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号