首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We study the junction condition relating the pressure to heat flux at the boundary of an accelerating and expanding spherically symmetric radiating star. We transform the junction condition to an ordinary differential equation by making a separability assumption on the metric functions in the space–time variables. The condition of separability on the metric functions yields several new exact solutions. A class of shear-free models is found which contains a linear equation of state and generalizes a previously obtained model. Four new shearing models are obtained; all the gravitational potentials can be written explicitly. A brief physical analysis indicates that the matter variables are well behaved.  相似文献   

2.
In this article, a variety of solitary wave solutions are found for some nonlinear equations. In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into the corresponding partial differential equation and the rational exp (?φ(η))-expansion method is implemented to find exact solutions of nonlinear equation. We find hyperbolic, trigonometric, rational and exponential function solutions using the above equation. The results of various studies show that the suggested method is very effective and can be used as an alternative for finding exact solutions of nonlinear equations in mathematical physics. A comparative study with the other methods gives validity to the technique and shows that the method provides additional solutions. Graphical representations along with the numerical data reinforce the efficacy of the procedure used. The specified idea is very effective, pragmatic for partial differential equations of fractional order and could be protracted to other physical phenomena.  相似文献   

3.
覃一平 《中国物理》2007,16(12):3605-3609
Application of the first junction condition to a highly symmetric spacetime was investigated recently in {\it Chin. Phys. Lett.} B {\bf 546} 189 2006, where a partial differential equation arising from the connection of the Robertson--Walker and the Schwarzschild--de Sitter metrics was presented, but no solutions of the equation were provided. Here we provide a proof to the statement that there exist solutions of the equation. In addition, an example of the solution and some analyses associated with this issue are presented. We find that in connecting the two metrics, there are three conditions which should be satisfied. Of these conditions, one condition constrains the place where the two metrics can take the same value for a local system whose mass is provided which marks the boundary of the system, and the other two constrain the transformation form. In realizing the connection of the two metrics, the latter two conditions are required to be satisfied only at the boundary defined by the former condition.  相似文献   

4.
《Physics letters. A》2020,384(23):126573
We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal boundary conditions. The construction applies for a broad class of linear partial differential equations and linear boundary conditions.  相似文献   

5.
李凯辉  刘汉泽  辛祥鹏 《物理学报》2016,65(14):140201-140201
本文运用李群分析的方法研究了一类高阶非线性波方程,得到了五阶非线性波方程的对称以及方程的最优系统,进而运用幂级数的方法,求得了方程的精确幂级数解.最后,给出了五阶非线性波方程的一些守恒律.  相似文献   

6.
A microscopic heterogeneous system under random influence is considered. The randomness enters the system at physical boundary of small scale obstacles as well as at the interior of the physical medium. This system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes (obstacles or heterogeneities), together with random dynamical boundary conditions on the boundaries of these small holes. A homogenized macroscopic model for this microscopic heterogeneous stochastic system is derived. This homogenized effective model is a new stochastic partial differential equation defined on a unified domain without small holes, with a static boundary condition only. In fact, the random dynamical boundary conditions are homogenized out, but the impact of random forces on the small holes’ boundaries is quantified as an extra stochastic term in the homogenized stochastic partial differential equation. Moreover, the validity of the homogenized model is justified by showing that the solutions of the microscopic model converge to those of the effective macroscopic model in probability distribution, as the size of small holes diminishes to zero. Dedicated to Giuseppe Da Prato on the occasion of his 70th birthday.  相似文献   

7.
We study an approach to constructing multiple soliton solutions of the (3 1)-dimensional nonlinear evolution equation. We take the (3 1)-dimensional potential- YTSF equation as an example. Using the extended homogeneous balance method, one can find a Backlund transformation to decompose the (3 1)-dimensional potential-YTSF equation into a set of partial differential equations. Starting from these partial differential equations, some multiple soliton solutions for the (3 1)-dimensional potential-YTSF equation are obtained by introducing a class of formal solutions.  相似文献   

8.
张解放  吴锋民 《中国物理》2002,11(5):425-428
We study an approach to constructing multiple soliton solutions of the (3+1)-dimensional nonlinear evolution equation. We take the (3+1)-dimensional Jimbo-Miwa (JM) equation as an example. Using the extended homogeneous balance method, one can find a B?cklund transformation to decompose the (3+1)-dimensional JM equation into a linear partial differential equation and two bilinear partial differential equations. Starting from these linear and bilinear partial differential equations, some multiple soliton solutions for the (3+1)-dimensional JM equation are obtained by introducing a class of formal solutions.  相似文献   

9.
The basic radiative transfer equation in three-dimensional space is expressed in terms of three commonly used coordinate systems, namely, Cartesian, cylindrical and spherical coordinates. The concept of a transformation matrix is applied to the transformation processes between the Cartesian system and two other systems. The spherical harmonic method is then applied to decompose the radiative transfer equation into a set of coupled partial differential equations for all three systems in terms of partial differential operators. By truncating the number of partial differential equations into four along with further mathematical analyses, we obtain a modified Helmholtz equation. For each coordinate system, analytical solutions in terms of infinite series are obtained whenever the equation is solvable by the technique of separation of variables with proper boundary conditions. Numerical computations are carried out for one dimensional radiative transfer to illustrate the applicability of the technique developed in the present study.  相似文献   

10.
We study separable and self-similar solutions to the HunterSaxton equation,a nonlinear wave equation which has been used to describe an instability in the director field of a nematic liquid crystal(among other applications).Essentially,we study solutions which arise from a nonlinear inhomogeneous ordinary differential equation which is obtained by an exact similarity transform for the HunterSaxton equation.For each type of solution,we are able to obtain some simple exact solutions in closed-form,and more complicated solutions through an analytical approach.We find that there is a whole family of self-similar solutions,each of which depends on an arbitrary parameter.This parameter essentially controls the manner of self-similarity and can be chosen so that the self-similar solutions agree with given initial data.The simpler solutions found constitute exact solutions to a nonlinear partial differential equation,and hence are also useful in a mathematical sense.Analytical solutions demonstrate the variety of behaviors possible within the wider family of similarity solutions.Both types of solutions cast light on self-similar phenomenon arising in the HunterSaxton equation.  相似文献   

11.
The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically, which shows rigorously that the uniformly propagating solution is linearly convectively stable and that the asymptotic relaxation is universal and exponential in time.  相似文献   

12.
An investigation is carried out on mixed convection boundary layer flow of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface in which the heat transfer includes the effects of viscous dissipation, elastic deformation, thermal radiation, and non-uniform heat source/sink for two general types of non-isothermal boundary conditions. The governing partial differential equations for the fluid flow and temperature are reduced to a nonlinear system of ordinary differential equations which are solved analytically using the homotopy analysis method (HAM). Graphical and numerical demonstrations of the convergence of the HAM solutions are provided, and the effects of various parameters on the skin friction coefficient and wall heat transfer are tabulated. In addition, it is demonstrated that previously reported solutions of the thermal energy equation given in [1] do not converge at the boundary, and therefore, the boundary derivatives reported are not correct.  相似文献   

13.
We develop an approach to construct multiple soliton solutions of the (3+1)-dimensional nonlinear evolution equation. We take the (3+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation as an example. Using the extended homogeneous balance method, one can find a Backlünd transformation to decompose the (3+1)-dimensional NNV into a set of partial differential equations. Starting from these partial differential equations, some multiple soliton solutions for the (3+1)-dimensional NNV equation are obtained by introducing a class of formal solutions.  相似文献   

14.
We study an approach to constructing multiple soliton solutions of the (3 1)-dimensional nonlinear evolu tion equation. We take the (3 1)-dimensional potential-YTSF equation as an example. Using the extended homogeneous balance method, one can find a Backlund transformation to decompose the (3 1)-dimensional potential-YTSF equa tion into a set of partial differential equations. Starting from these partial differential equations, some multiple soliton solutions for the (3 1)-dimensional potential-YTSF equation are obtained by introducing a class of formal solutions.  相似文献   

15.
We model the dynamics of a spherically symmetric radiating dynamical star with three spacetime regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. A large family of solutions to the field equations are presented for various realistic equations of state. We demonstrate that it is possible to obtain solutions via a direct integration of the second order equations resulting from the assumption of an equation of state. A comparison of our solutions with earlier well known results is undertaken and we show that all these solutions, including those of Husain, are contained in our family. We then generalise our class of solutions to higher dimensions. Finally we consider the effects of diffusive transport and transparently derive the specific equations of state for which this diffusive behaviour is possible.  相似文献   

16.
Problems concerning the optimal control over the advance of an object in a still water are considered in the framework of the nonstationary Euler hydrodynamical equation. It is assumed that the trail of the flow contains two point vortices of given intensity. The control parameter is the velocity of the advance, as a function of time. These optimization problems for a system of nonlinear partial differential equations having a free boundary (in the form of vortex centers that are no given a priory) are reduced to classical optimal control problems for a system of ordinary differential equations.  相似文献   

17.
We prove the existence of periodic solutions in a class of nonlinear partial differential equations, including the nonlinear Schrödinger equation, the nonlinear wave equation, and the nonlinear beam equation, in higher dimension. Our result covers cases of completely resonant equations, where the bifurcation equation is infinite-dimensional, such as the nonlinear Schrödinger equation with zero mass, for which solutions which at leading order are wave packets are shown to exist.  相似文献   

18.
A new generalized transformation method is presented to find more exact solutions of nonlinear partial differential equation. As an application of the method, we choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.  相似文献   

19.
The subject of this paper is the development of a general solution procedure for the vibrations (primary resonance and nonlinear natural frequency) of systems with cubic nonlinearities, subjected to nonlinear and time-dependent internal boundary conditions—this is a commonly occurring situation in the vibration analysis of continuous systems with intermediate elements. The equations of motion form a set of nonlinear partial differential equations with nonlinear, time-dependent, and coupled internal boundary conditions. The method of multiple timescales, an approximate analytical method, is applied directly to each partial differential equation of motion as well as coupled boundary conditions (i.e. on each sub-domain and the corresponding internal boundary conditions for a continuous system with intermediate elements) which ultimately leads to approximate analytical expressions for the frequency-response relation and nonlinear natural frequencies of the system. These closed-form solutions provide direct insight into the relationship between the system parameters and vibration characteristics of the system. Moreover, the suggested solution procedure is applied to a sample problem which is discussed in detail.  相似文献   

20.
In this paper, the symmetry method has been carried over to the generalizedvariable coefficients Zakharov-Kuznetsov equation. The infinitesimalsymmetries and the optimal system are deduced and from this optimal systemseven basic fields are determined, and for every vector field in the optimalsystem the admissible forms of the coefficients are found and this also leadsus to transform the given equation into partial differential equations intwo variables. After using some referenced transformations the mentionedpartial differential equations eventually reduce to ordinary differentialequations. The search for solutions to those equations has yielded manyexact solutions in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号