首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Let $\mathcal {A}_{2}(t)$ be the Airy2 process. We show that the random variable $$\sup_{t\leq\alpha} \bigl\{\mathcal {A}_2(t)-t^2 \bigr\}+\min\{0,\alpha \}^2 $$ has the same distribution as the one-point marginal of the Airy2→1 process at time α. These marginals form a family of distributions crossing over from the GUE Tracy-Widom distribution F GUE(x) for the Gaussian Unitary Ensemble of random matrices, to a rescaled version of the GOE Tracy-Widom distribution F GOE(41/3 x) for the Gaussian Orthogonal Ensemble. Furthermore, we show that for every α the distribution has the same right tail decay $e^{-\frac{4}{3} x^{3/2} }$ .  相似文献   

2.
We consider a continuous time random walk X in a random environment on ?+ such that its potential can be approximated by the function V:?+→? given by $V(x)=\sigma W(x) -\frac {b}{1-\alpha}x^{1-\alpha}$ where σW a Brownian motion with diffusion coefficient σ>0 and parameters b, α are such that b>0 and 0<α<1/2. We show that P-a.s. (where P is the averaged law) $\lim_{t\to\infty} \frac{X_{t}}{(C^{*}(\ln\ln t)^{-1}\ln t)^{\frac{1}{\alpha}}}=1$ with $C^{*}=\frac{2\alpha b}{\sigma^{2}(1-2\alpha)}$ . In fact, we prove that by showing that there is a trap located around $(C^{*}(\ln\ln t)^{-1}\ln t)^{\frac{1}{\alpha}}$ (with corrections of smaller order) where the particle typically stays up to time t. This is in sharp contrast to what happens in the “pure” Sinai’s regime, where the location of this trap is random on the scale ln2 t.  相似文献   

3.
I study a model for a massive one-dimensional particle in a singular periodic potential that is receiving kicks from a gas. The model is described by a Lindblad equation in which the Hamiltonian is a Schrödinger operator with a periodic δ-potential and the noise has a frictionless form arising in a Brownian limit. I prove that an emergent Markov process in an adiabatic limit governs the momentum distribution in the extended-zone scheme. The main result is a central limit theorem for a time integral of the momentum process, which is closely related to the particle’s position. When normalized by $t^{\frac{5}{4}}$ the integral process converges to a time-changed Brownian motion whose diffusion rate depends on the momentum process. The scaling $t^{\frac{5}{4}}$ contrasts with $t^{\frac{3}{2}}$ , which would be expected for the case of a smooth periodic potential or for a comparable classical process. The difference is a wave effect driven by momentum reflections that occur when the particle’s momentum is kicked near the half-spaced reciprocal lattice of the potential.  相似文献   

4.
Newman’s measure for (dis)assortativity, the linear degree correlation coefficient $\rho _{D}$ , is reformulated in terms of the total number N k of walks in the graph with k hops. This reformulation allows us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each rewiring step, either increases or decreases $\rho _{D}$ conform our desired objective. Spectral metrics (eigenvalues of graph-related matrices), especially, the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and the algebraic connectivity $\mu _{N-1}$ (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic processes on networks such as virus spreading and synchronization processes. We present various lower bounds for the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and we show, apart from some classes of graphs such as regular graphs or bipartite graphs, that the lower bounds for $\lambda _{1}$ increase with $\rho _{D}$ . A new upper bound for the algebraic connectivity $\mu _{N-1}$ decreases with $\rho _{D}$ . Applying the degree-preserving rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases $\lambda _{1}$ , but decreases $\mu _{N-1}$ , even leading to disconnectivity of the networks in many disjoint clusters and that (b) disassortative degree-preserving rewiring decreases $\lambda _{1}$ , but increases the algebraic connectivity, at least in the initial rewirings.  相似文献   

5.
In this paper, we investigate the diffusion process of interacting Brownian particles on stepped surfaces through a Langevin dynamic simulation method. Our primary interest is the investigation of the dynamics properties by calculating the collective diffusion coefficient for non-regularly spaced stepped structures using the Frenkel–Kontorova repulsive interactions. In particular, we have studied the effects of the Ehrlich–Schwoebel barrier $E_{S}$ and the additional binding energy $E_{B}$ on the diffusion process. Overall, our simulation results show that the value of the diffusion coefficient $D$ is reduced with increasing $E_{S}$ and $E_{B}$ . This reduction is also observed when decreasing the size of terraces. This diminution is well interpreted by calculating the effective potential which includes the effect of both potentials of Frenkel–Kontorova and the substrate.  相似文献   

6.
Given a conformal QFT local net of von Neumann algebras ${\mathcal {B}_2}$ on the two-dimensional Minkowski spacetime with irreducible subnet ${\mathcal {A} \otimes \mathcal {A}}$ , where ${\mathcal {A}}$ is a completely rational net on the left/right light-ray, we show how to consistently add a boundary to ${\mathcal {B}_2}$ : we provide a procedure to construct a Boundary CFT net ${\mathcal {B}}$ of von Neumann algebras on the half-plane x >  0, associated with ${\mathcal {A}}$ , and locally isomorphic to ${\mathcal {B}_2}$ . All such locally isomorphic Boundary CFT nets arise in this way. There are only finitely many locally isomorphic Boundary CFT nets and we get them all together. In essence, we show how to directly redefine the C* representation of the restriction of ${\mathcal {B}_2}$ to the half-plane by means of subfactors and local conformal nets of von Neumann algebras on S 1.  相似文献   

7.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

8.
The topics of confinement, average forces, and the Ehrenfest theorem are examined for a particle in one spatial dimension. Two specific cases are considered: (i) A free particle moving on the entire real line, which is then permanently confined to a line segment or ‘a box’ (this situation is achieved by taking the limit V 0?→?∞ in a finite well potential). This case is called ‘a particle-in-an-infinite-square-well-potential’. (ii) A free particle that has always been moving inside a box (in this case, an external potential is not necessary to confine the particle, only boundary conditions). This case is called ‘a particle-in-a-box’. After developing some basic results for the problem of a particle in a finite square well potential, the limiting procedure that allows us to obtain the average force of the infinite square well potential from the finite well potential problem is re-examined in detail. A general expression is derived for the mean value of the external classical force operator for a particle-in-an-infinite-square-well-potential, $\hat{F}$ . After calculating similar general expressions for the mean value of the position ( $\hat{X}$ ) and momentum ( $\hat{P}$ ) operators, the Ehrenfest theorem for a particle-in-an-infinite-square-well-potential (i.e., $\mathrm{d}\langle\hat{X}\rangle/\mathrm{d}t=\langle\hat{P}\rangle/M$ and $\mathrm{d}\langle\hat{P}\rangle/\mathrm{d}t=\langle\hat{F}\rangle$ ) is proven. The formal time derivatives of the mean value of the position ( $\hat{x}$ ) and momentum ( $\hat{p}$ ) operators for a particle-in-a-box are re-introduced. It is verified that these derivatives present terms that are evaluated at the ends of the box. Specifically, for the wave functions satisfying the Dirichlet boundary condition, the results, $\mathrm{d}\langle\hat{x}\rangle/\mathrm{d}t=\langle\hat{p}\rangle/M$ and $\mathrm{d}\langle\hat{p}\rangle/\mathrm{d}t=\mathrm{b.t.}+\langle\hat{f}\rangle$ , are obtained where b.t. denotes a boundary term and $\hat{f}$ is the external classical force operator for the particle-in-a-box. Thus, it appears that the expected Ehrenfest theorem is not entirely verified. However, by considering a normalized complex general state that is a combination of energy eigenstates to the Hamiltonian describing a particle-in-a-box with v(x)?=?0 ( $\Rightarrow\hat{f}=0$ ), the result that the b.t. is equal to the mean value of the external classical force operator for the particle-in-an-infinite-square-well-potential is obtained, i.e., $\mathrm{d}\langle\hat{p}\rangle/\mathrm{d}t$ is equal to $\langle\hat{F}\rangle$ . Moreover, the b.t. is written as the mean value of a quantity that is called boundary quantum force, f B. Thus, the Ehrenfest theorem for a particle-in-a-box can be completed with the formula $\mathrm{d}\langle\hat{p}\rangle/\mathrm{d}t=\langle{{f_\mathrm{B}}}\rangle$ .  相似文献   

9.
In this article, we study the critical dissipative surface quasi-geostrophic equation (SQG) in ${\mathbb{R}^2}$ R 2 . Motivated by the study of the homogeneous statistical solutions of this equation, we show that for any large initial data θ 0 liying in the space ${\Lambda^{s} (\dot{H}^{s}_{uloc}(\mathbb{R}^2)) \cap L^\infty(\mathbb{R}^2)}$ Λ s ( H ˙ u l o c s ( R 2 ) ) ∩ L ∞ ( R 2 ) the critical (SQG) has a global weak solution in time for 1/2 <  s <  1. Our proof is based on an energy inequality verified by the equation ${(SQG)_{R,\epsilon}}$ ( S Q G ) R , ? which is nothing but the (SQG) equation with truncated and regularized initial data. By classical compactness arguments, we show that we are able to pass to the limit ( ${R \rightarrow \infty}$ R → ∞ , ${\epsilon \rightarrow 0}$ ? → 0 ) in ${(SQG)_{R,\epsilon}}$ ( S Q G ) R , ? and that the limit solution has the desired regularity.  相似文献   

10.
11.
We study subadditive functions of the random parking model previously analyzed by the second author. In particular, we consider local functions S of subsets of ${\mathbb{R}^d}$ and of point sets that are (almost) subadditive in their first variable. Denoting by ξ the random parking measure in ${\mathbb{R}^d}$ , and by ξ R the random parking measure in the cube Q R =  (?R, R) d , we show, under some natural assumptions on S, that there exists a constant ${\overline{S} \in \mathbb{R}}$ such that $$\lim_{R \to +\infty} \frac{S(Q_R, \xi)}{|Q_R|} \, = \, \lim_{R \to +\infty} \frac{S(Q_R, \xi^{R})}{|Q_R|} \, = \, \overline{S}$$ almost surely. If ${\zeta \mapsto S(Q_R, \zeta)}$ is the counting measure of ${\zeta}$ in Q R , then we retrieve the result by the second author on the existence of the jamming limit. The present work generalizes this result to a wide class of (almost) subadditive functions. In particular, classical Euclidean optimization problems as well as the discrete model for rubber previously studied by Alicandro, Cicalese, and the first author enter this class of functions. In the case of rubber elasticity, this yields an approximation result for the continuous energy density associated with the discrete model at the thermodynamic limit, as well as a generalization to stochastic networks generated on bounded sets.  相似文献   

12.
We develop quantum mechanical Dirac ket-bra operator’s integration theory in $\mathfrak{Q}$ -ordering or $\mathfrak{P}$ -ordering to multimode case, where $\mathfrak{Q}$ -ordering means all Qs are to the left of all Ps and $\mathfrak{P}$ -ordering means all Ps are to the left of all Qs. As their applications, we derive $\mathfrak{Q}$ -ordered and $\mathfrak{P}$ -ordered expansion formulas of multimode exponential operator $e^{ - iP_l \Lambda _{lk} Q_k } $ . Application of the new formula in finding new general squeezing operators is demonstrated. The general exponential operator for coordinate representation transformation $\left| {\left. {\left( {_{q_2 }^{q_1 } } \right)} \right\rangle \to } \right|\left. {\left( {_{CD}^{AB} } \right)\left( {_{q_2 }^{q_1 } } \right)} \right\rangle $ is also derived. In this way, much more correpondence relations between classical coordinate transformations and their quantum mechanical images can be revealed.  相似文献   

13.
When the $\bar{K}N$ system is submerged in nuclear medium the $\bar{K}N$ scattering amplitude and the final state branching ratios exhibit a strong energy dependence when going to energies below the $\bar{K}N$ threshold. A sharp increase of $\bar{K}N$ attraction below the $\bar{K}N$ threshold provides a link between shallow $\bar{K}$ -nuclear potentials based on the chiral $\bar{K}N$ amplitude evaluated at threshold and the deep phenomenological optical potentials obtained in fits to kaonic atoms data. We show the energy dependence of the in-medium K ??? p amplitude and demonstrate the impact of energy dependent branching ratios on the Λ-hypernuclear production rates.  相似文献   

14.
Assume ${\mathcal{A}}$ is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel’s deformation ${\mathcal{A}_J}$ of ${\mathcal{A}}$ . We construct an explicit isomorphism between the smooth crossed products ${V\ltimes\mathcal{A}_J}$ and ${V\ltimes\mathcal{A}}$ . When combined with the Elliott–Natsume–Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel’s and Kasprzak’s approaches to deformation.  相似文献   

15.
We analyze a deterministic cellular automaton σ ?=(σ n :n≥0) corresponding to the zero-temperature case of Domany's stochastic Ising ferromagnet on the hexagonal lattice $\mathbb{N}$ . The state space $\mathcal{S}_\mathbb{H} = \left\{ { - 1, + 1} \right\}^\mathbb{H}$ consists of assignments of ?1 or +1 to each site of $\mathbb{H}$ and the initial state $\sigma ^0 = \left\{ {\sigma _{^x }^0 } \right\}_{x \in \mathbb{H}}$ is chosen randomly with P(σ 0 x=+1)=p∈[0,1]. The sites of $\mathbb{H}$ are partitioned in two sets $\mathcal{A}$ and $\mathcal{B}$ so that all the neighbors of a site x in $\mathcal{A}$ belong to $\mathcal{B}$ and vice versa, and the discrete time dynamics is such that the σ ? x 's with ${x \in \mathcal{A}}$ (respectively, $\mathcal{B}$ ) are updated simultaneously at odd (resp., even) times, making σ ? x agree with the majority of its three neighbors. In ref. 1 it was proved that there is a percolation transition at p=1/2 in the percolation models defined by σ n , for all times n∈[1,∞]. In this paper, we study the nature of that transition and prove that the critical exponents β, ν, and η of the dependent percolation models defined by σ n , n∈[1,∞], have the same values as for standard two-dimensional independent site percolation (on the triangular lattice).  相似文献   

16.
We study the radiative and semileptonic B decays involving a spin-J resonant $K_{J}^{(*)}$ with parity (?1) J for $K_{J}^{*}$ and (?1) J+1 for K J in the final state. Using large energy effective theory (LEET) techniques, we formulate $B\to K_{J}^{(*)}$ transition form factors in the large recoil region in terms of two independent LEET functions $\zeta_{\perp}^{K_{J}^{(*)}}$ and $\zeta_{\parallel}^{K_{J}^{(*)}}$ , the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, $\zeta_{\perp,\parallel}^{K_{J}^{(*)}}$ exhibit a dipole dependence in q 2. We predict the decay rates for $B\to K_{J}^{(*)}\gamma$ , $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ and $B\to K_{J}^{(*)}\nu \bar{\nu}$ . The branching fractions for these decays with higher K-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of $\zeta^{K_{J}^{(*)}}_{\perp,\parallel}$ . Furthermore, if the spin of $K_{J}^{(*)}$ becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch–Gordan coefficients defined by the polarization tensors of the $K_{J}^{(*)}$ . We also calculate the forward–backward asymmetry of the $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ decay, for which the zero is highly insensitive to the K-resonances in the LEET parametrization.  相似文献   

17.
Radiative neutralino decay $\chi^{0}_{2}\longrightarrow\chi^{0}_{1}\gamma$ is studied in a Split Supersymmetric scenario, and compared with mSUGRA and MSSM. This one-loop process has a transition amplitude which is often quite small, but it has the advantage of providing a very clear and distinct signature: electromagnetic radiation plus missing energy. In Split Supersymmetry this radiative decay is in direct competition with the tree-level three-body decay $\chi^{0}_{2}\longrightarrow\chi^{0}_{1}f\bar{f}$ , and we obtain large values for the branching ratio $B(\chi^{0}_{2}\longrightarrow\chi^{0}_{1}\gamma)$ which can be close to unity in the region M 2M 1, something already seen in the MSSM. Furthermore, the values for the radiative and the tree-level neutralino decay branching ratios have a strong dependence on the logarithm of the split supersymmetric scale $\widetilde{m}$ , which otherwise is very difficult to infer from experimental observables.  相似文献   

18.
We consider a system of N point particles moving on a d-dimensional torus $\mathbb{T}^{d}$ . Each particle is subject to a uniform field E and random speed conserving collisions $\mathbf{v}_{i}\to\mathbf{v}_{i}'$ with $|\mathbf{v}_{i}|=|\mathbf{v}_{i}'|$ . This model is a variant of the Drude-Lorentz model of electrical conduction (Ashcroft and Mermin in Solid state physics. Brooks Cole, Pacific Grove, 1983). In order to avoid heating by the external field, the particles also interact with a Gaussian thermostat which keeps the total kinetic energy of the system constant. The thermostat induces a mean-field type of interaction between the particles. Here we prove that, starting from a product measure, in the limit N→∞, the one particle velocity distribution f(q,v,t) satisfies a self consistent Vlasov-Boltzmann equation, for all finite time t. This is a consequence of “propagation of chaos”, which we also prove for this model.  相似文献   

19.
The CNDO/S method has been applied to the internal effect of Si on the electronic spectrum of the acetone molecule; there is a considerable bathochromic shift and an increase in the \(S_0 \to S_{n\pi ^ * } \) intensity for theα-silyl ketones, while theβ-silyl ketons give only an increase in the intensity of \(S_0 \to S_{n\pi ^ * } \) absorption relative to acetone. The heavy atom substantially alters \(f_{S_0 \to T_{n\sigma ^* } } \) and \(\tau _{T_{n\sigma ^* } }^0 \) but has little effect on \(f_{S_0 \to T_{n\pi ^* } } \) and \(\tau _{T_{n\pi ^* } }^0 \) .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号