首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we study an inverse optimal problem in discrete-time stochastic control. We give necessary and sufficient conditions for a solution to a system of stochastic difference equations to be the solution of a certain optimal control problem. Our results extend to the stochastic case the work of Dechert. In particular, we present a stochastic version of an important principle in welfare economics.  相似文献   

2.
We present a quasi-Newton sequential quadratic programming (SQP) algorithm for nonlinear programs in which the Hessian of the Lagrangian function is block-diagonal. Problems with this characteristic frequently arise in the context of optimal control; for example, when a direct multiple shooting parametrization is used. In this article, we describe an implementation of a filter line-search SQP method that computes search directions using an active-set quadratic programming (QP) solver. To take advantage of the block-diagonal structure of the Hessian matrix, each block is approximated separately by quasi-Newton updates. For nonconvex instances, that arise, for example, in optimum experimental design control problems, these blocks are often found to be indefinite. In that case, the block-BFGS quasi-Newton update can lead to poor convergence. The novel aspect in this work is the use of SR1 updates in place of BFGS approximations whenever possible. The resulting indefinite QPs necessitate an inertia control mechanism within the sparse Schur-complement factorization that is carried out by the active-set QP solver. This permits an adaptive selection of the Hessian approximation that guarantees sufficient progress towards a stationary point of the problem. Numerical results demonstrate that the proposed approach reduces the number of SQP iterations and CPU time required for the solution of a set of optimal control problems.  相似文献   

3.
We consider time discrete systems which are described by a system of difference equations. The related discrete optimal control problems are introduced. Additionally, a gametheoretic extension is derived, which leads to general multicriteria decision problems. The characterization of their optimal behavior is studied. Given starting and final states define the decision process; applying dynamic programming techniques suitable optimal solutions can be gained. We generalize that approach to a special gametheoretic decision procedure on networks. We characterize Nash equilibria and present sufficient conditions for their existence. A constructive algorithm is derived. The sufficient conditions are exploited to get the algorithmic solution. Its complexity analysis is presented and at the end we conclude with an extension to the complementary case of Pareto optima.Dmitrii Lozovanu was Supported by BGP CRDF-MRDA MOM2-3049-CS-03.  相似文献   

4.
Summary. An optimal control problem for impressed cathodic systems in electrochemistry is studied. The control in this problem is the current density on the anode. A matching objective functional is considered. We first demonstrate the existence and uniqueness of solutions for the governing partial differential equation with a nonlinear boundary condition. We then prove the existence of an optimal solution. Next, we derive a necessary condition of optimality and establish an optimality system of equations. Finally, we define a finite element algorithm and derive optimal error estimates. Received March 10, 1993 / Revised version received July 4, 1994  相似文献   

5.
A discrete time optimal forestry model is built and a shooting method solution algorithm identified. The applicability of the model and algorithm to public policies that affect forestry resources is demonstrated in an application of the model to examine the development of wood processing capacity in Southeast Asia. The necessary conditions of the optimal control model are manipulated to identify a difference equation problem with initial and terminal conditions. The solution to this boundary value problem is identified using a search routine that repetitively, numerically evaluates (shoots) the difference equations. The solution is the trajectory that satisfies the initial and terminal conditions.  相似文献   

6.
The immune system does not response in equal probability to every epitope of an invader. We investigate the immune system’s decision making process using optimal control principles. Mathematically, this formulation requires the solution of a two-point boundary-value problem, which is a challenging task especially when the control variables are bounded. In this work, we develop a computational approach based on the shooting technique for bounded optimal control problems. We then utilize the computational approach to carry out extensive numerical studies on a simple immune response model of two competing controls. Numerical solutions demonstrate that the results of optimal control depend on the objective function, the limitations on control inputs, as well as the amounts of peptides. Moreover, the state space of peptides can be divided into different regions according the properties of the solutions. The developed algorithm not only provides a useful tool for understanding decision making strategies of the immune system but can also be utilized to solve other complex optimal control problems.  相似文献   

7.
Penalty function is an important tool in solving many constrained optimization problems in areas such as industrial design and management. In this paper, we study exactness and algorithm of an objective penalty function for inequality constrained optimization. In terms of exactness, this objective penalty function is at least as good as traditional exact penalty functions. Especially, in the case of a global solution, the exactness of the proposed objective penalty function shows a significant advantage. The sufficient and necessary stability condition used to determine whether the objective penalty function is exact for a global solution is proved. Based on the objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions. Furthermore, the sufficient and necessary calmness condition on the exactness of the objective penalty function is proved for a local solution. An algorithm is presented in the paper in finding a local solution, with its convergence proved under some conditions. Finally, numerical experiments show that a satisfactory approximate optimal solution can be obtained by the proposed algorithm.  相似文献   

8.
In this paper we present a new steepest-descent type algorithm for convex optimization problems. Our algorithm pieces the unknown into sub-blocs of unknowns and considers a partial optimization over each sub-bloc. In quadratic optimization, our method involves Newton technique to compute the step-lengths for the sub-blocs resulting descent directions. Our optimization method is fully parallel and easily implementable, we first presents it in a general linear algebra setting, then we highlight its applicability to a parabolic optimal control problem, where we consider the blocs of unknowns with respect to the time dependency of the control variable. The parallel tasks, in the last problem, turn “on” the control during a specific time-window and turn it “off” elsewhere. We show that our algorithm significantly improves the computational time compared with recognized methods. Convergence analysis of the new optimal control algorithm is provided for an arbitrary choice of partition. Numerical experiments are presented to illustrate the efficiency and the rapid convergence of the method.  相似文献   

9.
Solution sets of systems of linear equations over fields are characterized as being affine subspaces. But what can we say about the “shape” of the set of all solutions of other systems of equations? We study solution sets over arbitrary algebraic structures, and we give a necessary condition for a set of n-tuples to be the set of solutions of a system of equations in n unknowns over a given algebra. In the case of Boolean equations we obtain a complete characterization, and we also characterize solution sets of systems of Boolean functional equations.  相似文献   

10.
An optimality system of equations for the optimal control problem governed by Helmholtz-type equations is derived. By the associated first-order necessary optimality condition, we obtain the conjugate gradient method (CGM) in the continuous case. Introducing the sequence of higher-order fundamental solutions, we propose an iterative algorithm based on the conjugate gradient-boundary element method using the multiple reciprocity method (CGM+MRBEM) for solving the discrete control input. This algorithm has an advantage over that of the existing literatures because the main attribute (the reduced dimensionality) of the boundary element method is fully utilized. Finally, the local error estimates for this scheme are obtained, and a test problem is given to illustrate the efficiency of the proposed method.  相似文献   

11.
Fishways are the main type of hydraulic devices currently used to facilitate migration of fish past obstructions (dams, waterfalls, rapids,…rapids,) in rivers. In this paper we present a mathematical formulation of an optimal control problem related to the optimal management of a vertical slot fishway, where the state system is given by the shallow water equations, the control is the flux of inflow water, and the cost function reflects the need of rest areas for fish and of a water velocity suitable for fish leaping and swimming capabilities. We give a first-order optimality condition for characterizing the optimal solutions of this problem. From a numerical point of view, we use a characteristic-Galerkin method for solving the shallow water equations, and we use an optimization algorithm for the computation of the optimal control. Finally, we present numerical results obtained for the realistic case of a standard nine pools fishway.  相似文献   

12.
First, we review the authors' recent results on translating solutions to mean curvature flows in Euclidean space as well as in Minkowski space, emphasizing on the asymptotic expansion of rotationally symmetric solutions. Then we study the sufficient condition for which the translating solution is rotationally symmetric. We will use a moving plane method to show that this condition is optimal for the symmetry of solutions to fully nonlinear elliptic equations without ground state condition.  相似文献   

13.
For a coupled nonlinear singular system of thermoelasticity with one space dimension, we consider its initial boundary value problem on an interval. For one of the unknowns a classical condition is replaced by a nonlocal constraint of integral type. Because of the presence of a memory term in one of the equations and the presence of a weighted boundary integral condition, the solution requires a delicate set of techniques. We first solve a particular case of the given nonlinear problem by using a functional analysis approach. On the basis of the results obtained and an iteration method we establish the well-posedness of solutions in weighted Sobolev spaces.  相似文献   

14.
In this article we study a boundary control problem for an Oseen-type model of viscoelastic fluid flow. The existence of a unique optimal solution is proved and an optimality system is derived by the first-order necessary condition. We investigate finite element approximations to a solution of the optimality system, and a solution algorithm for the system based on the gradient method.  相似文献   

15.
In this paper, we analyze the dynamics of a multi-species fisheries system in the presence of harvesting. We solve the problem of finding the optimal harvesting strategy for a mid-term horizon with a fixed final stock of each species, while maximizing the expected present value of total revenues. The problem is formulated as an optimal control problem. For its solution, we combine techniques derived from Pontryagin’s Maximum Principle, cyclic coordinate descent and the shooting method. The algorithm we develop can solve problems both with inter-species competition and with predator–prey behaviors. Several numerical examples are presented to illustrate the different possibilities of the method and a study of the dependence of the behavior on some parameters is performed.  相似文献   

16.
Turnpike properties have been established long time ago in finite-dimensional optimal control problems arising in econometry. They refer to the fact that, under quite general assumptions, the optimal solutions of a given optimal control problem settled in large time consist approximately of three pieces, the first and the last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially close to the optimal steady-state solution of an associated static optimal control problem. We provide in this paper a general version of a turnpike theorem, valuable for nonlinear dynamics without any specific assumption, and for very general terminal conditions. Not only the optimal trajectory is shown to remain exponentially close to a steady-state, but also the corresponding adjoint vector of the Pontryagin maximum principle. The exponential closedness is quantified with the use of appropriate normal forms of Riccati equations. We show then how the property on the adjoint vector can be adequately used in order to initialize successfully a numerical direct method, or a shooting method. In particular, we provide an appropriate variant of the usual shooting method in which we initialize the adjoint vector, not at the initial time, but at the middle of the trajectory.  相似文献   

17.
In this work, we shall consider stationary (mild) solutions for a class of retarded functional linear differential equations with additive noise in Hilbert spaces. We first introduce a family of Green operators for the stochastic systems and establish stability results which will play an important role in the investigation of stationary solutions. A criterion imposed on the Green operators is presented to identify a unique stationary solution for the systems considered. Under strong quasi-Feller property, it is shown that this criterion is a sufficient and necessary condition to guarantee a unique stationary solution, based on a method having its origins in optimal control theory.  相似文献   

18.
In this paper, a new approximation method for fractional differential equations based on Mittag-Leffler function is developed. Finite Mittag-Leffler function and its fractional-order derivatives are investigated. An efficient technique for solving linear and nonlinear fractional order differential equations is developed. The proposed method combines Mittag-Leffler collocation method and optimization technique. Error estimation of the approximation is stated and proved. We present numerical results and comparisons of previous treatments to demonstrate the efficiency and applicability of the proposed method. Making use of small number of unknowns, the resulting solution converges to the exact one in the linear case and it has a very small error in the nonlinear case.  相似文献   

19.
We study the optimal input-output stabilization of discrete time-invariant linear systems in Hilbert spaces by state feedback. We show that a necessary and sufficient condition for this problem to be solvable is that the transfer function has a right factorization over H-infinity. A necessary and sufficient condition in terms of an (arbitrary) realization is that each state which can be reached in a finite time from the zero initial state has a finite cost. Another equivalent condition is that the control Riccati equation has a solution (in general unbounded and even non densely defined). The optimal state feedback input-output stabilization problem can then be solved explicitly in terms of the smallest solution of this control Riccati equation. We further show that after renorming the state space in terms of the solution of the control Riccati equation, the closed-loop system is not only input-output stable, but also strongly internally stable. Received: July 4, 2007. Revised: October 17, 2007.  相似文献   

20.
In this paper, we consider the rectilinear distance location problem with box constraints (RDLPBC) and we show that RDLPBC can be reduced to the rectilinear distance location problem (RDLP). A necessary and sufficient condition of optimality is provided for RDLP. A fast algorithm is presented for finding the optimal solution set of RDLP. Global convergence of the method is proved by a necessary and sufficient condition. The new proposed method is provably more efficient in finding the optimal solution set. Computational experiments highlight the magnitude of the theoretical efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号