首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smith JN  Keil AD  Noll RJ  Cooks RG 《The Analyst》2011,136(1):120-127
Gaseous ammonia, a common toxic industrial compound, is not detected readily in ion trap mass spectrometers because its molecular ion falls below the low-mass cutoff (~m/z 40) normally used when examining organic compounds. Instead, reactions of ammonia with halobenzene radical cations were used with internal electron ionization in two cylindrical ion trap miniature mass spectrometers to create a characteristic product ion by which to identify and quantify ammonia. Ammonia showed a linear response over the concentration range studied (parts per million [ppm] to parts per billion [ppb]) with limits of detection of 17 ppm and 220 ppb for experiments involving direct introduction and thermal desorption after pre-concentration, respectively. These values are comparable to ammonia's permissible exposure limit (50 ppm) and odor threshold (5 ppm). Receiver operating characteristic (ROC) curves were used to describe the method sensitivity, the probability of true positives, and the false positive rate for ammonia. A customized reaction scan function was created to select the species available for the ion/molecule reaction and set the amount of time the product ion could be accumulated in the trap. Product ion identity was verified using tandem mass spectrometry. Similar reactions with methylamine, ethylamine and the two nitriles, acetonitrile and benzonitrile, were explored.  相似文献   

2.
Ion/molecule reactions were explored in a newly developed miniature mass spectrometer fitted with a rectilinear ion trap (RIT) mass analyzer. The tandem mass spectrometry performance of this instrument is demonstrated using collision induced dissociation (CID) and ion/molecule reactions. The latter includes Eberlin transacetalization reactions and electrophilic additions. Selective detection of the chemical warfare simulant dimethyl methyl phosphonate (DMMP) was achieved through selective Eberlin reactions of its characteristic phosphonium fragment ion CH3OP(+)(O)CH3 (m/z 93), with 1,4-dioxane or 1,3-dioxolane. Efficient adduct formation as a result of electrophilic attack by the phosphonium ion on various nucleophilic reagents, including 1,1,3,3-tetramethyl urea, methanesulfonic acid methyl ester, dimethyl sulfoxide and methyl salicylate, was also observed using the RIT device. The product ions of these reactions were analyzed using CID and the characteristic fragmentation patterns of the ionic addition products were recorded using multiple-stage experiments in the miniature RIT instrument. This study clearly demonstrates that a small, home-built, miniature RIT mass spectrometer can be used to perform analytically useful ion/molecule reactions and also that instruments like this have the potential to provide a portable platform for in situ detection of organophosphorus esters and related compounds with high specificity using tandem mass spectrometry.  相似文献   

3.
Solid phase micro-extraction in a miniature ion trap mass spectrometer   总被引:1,自引:0,他引:1  
Fiber introduction mass spectrometry (FIMS), a variation of solid-phase microextraction (SPME) and membrane introduction mass spectrometry (MIMS), is employed with a miniature mass spectrometer. The inlet system, constructed of commercially available vacuum parts, allows the direct introduction of the SPME needle vacuum chamber into the mass spectrometer. Thermal desorption of the analyte from the poly(dimethylsiloxane) (PDMS) coated fiber was achieved with a built in nichrome heater, followed by electron ionization of the analytes internal to the cylindrical ion trap (CIT). The system has been tested with several volatile organic compounds (VOC) in air and to analyze the headspace over aqueous solutions, with limits of detection in the low ppb range. The signal rise (10-90%) and fall (90-10%) times for the system ranged from 0.1 to 1 s (rise) and 1.2 to 6 s (fall) using heated desorption. In addition, this method has been applied to quantitation of toluene in benzene, toluene, xylene (BTX) mixtures in water and gasoline. This simple and rapid analysis method, coupled to a portable mass spectrometer, has been shown to provide a robust, simple, rapid, reproducible, accurate and sensitive (low ppb range) fieldable approach to the effective in situ analysis of VOC in various matrices.  相似文献   

4.
Zhu Z  Xiong C  Xu G  Liu H  Zhou X  Chen R  Peng WP  Nie Z 《The Analyst》2011,136(7):1305-1309
A miniature cylindrical ion trap mass spectrometer (CIT-MS) equipped with an inexpensive mechanical pump was constructed, and used to measure the masses of cells and microparticles generated by laser induced acoustic desorption ionization. Compared with a previous lab scale quadrupole ion trap mass spectrometer (QIT-MS), the novel miniature CIT-MS had smaller volume (the radius r(0)=5 mm), simpler ion trap fabrication and overall instrument construction, required a lower trapping voltage, and reduced the weight, power and cost of the instrument. The CIT-MS was calibrated using standard polystyrene beads of 2.982 μm diameter. The CIT-MS was used to measure the total dry weight of human red blood cells (RBCs) from a healthy female adult (2.12×10(13) Da) and a patient with anemia (1.35×10(13) Da). The coefficient of variance (CV) for the healthy individual was 21% and that for the patient was 30.4%. The CIT-MS was also applied to guinea pig RBCs and the total dry weight was determined as 1.34×10(13) Da with a CV of 37.9%. These measurements are consistent with previous QIT-MS measurements. The new miniaturized instrument has potential for applications in field-portable, biological and aerosol analysis.  相似文献   

5.
A linear-geometry, radio-frequency, quadrupole ion trap has been developed to generate, purify, accumulate and study atomic and molecular ions in the gas phase. By employing a trap-based system, both reactant and product ions can be stored for significant time periods, which can both enhance the efficiency of gas-phase reaction processes and create an environment to observe collision products after vibrational and rotational excitations have had time to relax. Relaxation occurs via viscous cooling with a dilute buffer gas or via laser cooling. Furthermore, the setup is particularly useful for performing optical spectroscopy on the trapped ions.Atomic and molecular ovens are used to generate thermal beams of neutral species, which are then ionized by electron bombardment. The ions can be trapped, or they can be collided with neutral molecules (e.g. C60) under well defined experimental conditions. The collision energies are variable over a range from nearly 0 to 200 eV. This feature makes possible studies of complex formation, charge transfer and collision-induced fragmentation as a function of kinetic energy. A wide range of masses of up to 4000 u can be stored and manipulated with this apparatus.Two mass spectrometric techniques for the analysis of trapped ionic species are presented. In one method, parametric excitation of the secular motion is used to generate mass spectra with resolutions as high as 1 part in 800 with a simple experimental setup. The second method is capable of quickly generating mass spectra over the entire range of trapped masses, but has only moderate resolution. These spectra are generated by linearly sweeping the rf-trapping voltage to zero and detecting ions as their trap depth falls below a threshold value. In the trapping volume, which is 10 cm in length and 200 μm in diameter, 106 ions can be loaded and stored, corresponding to an ion density above 108 cm−3. Such densities facilitate spectroscopy of the stored ions. Both laser-induced fluorescence and photodissociation measurements have been carried out with a cw laser system providing near-infrared, visible, and ultraviolet beams. Absolute, total cross-sections and branching ratios of the photodissociation of MgC+60 have been measured.  相似文献   

6.
Sokol E  Edwards KE  Qian K  Cooks RG 《The Analyst》2008,133(8):1064-1071
A miniature ion trap mass analyzer was applied to the analysis of traces of hydrocarbons and simple heteroatomics in the vapor phase and in aqueous solution. Vapors of acetone, acetic acid, acetonitrile, benzene, butanethiol, carbon disulfide, hexane, dichloromethane, naphthalene, toluene and xylenes were detected and quantified using solid sorbent trapping and, in some cases, by passage through a membrane interface. Aqueous solutions of benzene, toluene, xylenes, hexane and a petroleum naphtha distillate were examined using the membrane interface. Sampling, detection and identification of all compounds was completed in times of less than one minute. The gas-phase samples of toluene and benzene were detected at 200 ppt (limit of detection, LOD) for toluene and 600 ppt for benzene. Identification of benzene and xylene in aqueous solutions was readily achieved with LODs of 200 and 400 ppb, respectively. Quantification over a linear dynamic range of two orders of magnitude for the aqueous samples and three orders of magnitude for the vapor-phase samples was demonstrated.  相似文献   

7.
The capabilities of ion traps to perform attachment reactions with alkali cations using classical scanning sequences have been exploited here with an ion trap mass spectrometer equipped with an external ion source to generate the reagent Na(+) ions. Kinetic studies have shown that, as expected, the attachment efficiency is very high, near-collision efficiency, and illustrate how the present method is particularly well suited for ion trap mass spectrometers. The large adaptability of the experimental conditions suggests that a wide range of organic molecules, characterized by a large alkali ion affinity, could be readily detected even at low levels. Applications of sodium ion attachment reactions are illustrated by the detection and characterization of explosives and some of their correlated pyrolytic degradation products. Detection -limits for phthalate compounds are shown to reach the low ng range of injected samples, without any noticeable difficulties in the full scan mode of acquiring mass spectra. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

8.
The ion-trap mass spectrometer has several features which make it a useful device for the study of ion/molecule reactions, viz., the ability to store ions for long periods, mass-selective storage, access to time and pressure-resolved data, and MS/MS capabilities in which the fragmentation behavior of selected ions may give insight into ion structure. These capabilities are used to study the gas-phase halomethylation of a variety of organic compounds with CH2Cl+ as the reagent ion. The ion/molecule reaction of greatest interest involves addition of CH2Cl+, followed by the elimination of HCl, resulting in a net addition of methyne. This methyne-addition reaction is observed in many aromatic compounds as well as such compounds as cycloheptatriene and cyclo-octene. The structures of the product ions were probed using collision-activated dissociation.  相似文献   

9.
Two small (5 mm internal radius) cylindrical ion traps (CITs) are arranged in series and operated using a single ion source, detector and radio frequency (rf) trapping signal. Ions are trapped in the first CIT and later transferred to the second by applying a direct current (dc) pulse to the endcap electrode of the first trap. This process is facilitated if a second, appropriately timed, retarding dc pulse is applied to the exit endcap electrode of the second trap. Mesh endcaps are used for the CITs to increase the number of ionizing electrons entering the trap and to maximize the transfer efficiency and detected signal. The transfer efficiency is dependent on the amplitude of the dc potential applied to eject the ions from the first trap, the amplitude of the dc potential applied to retain the ions in the second trap, and the period during which the retarding potential is applied. The amplitude and phase of the rf also affect the transfer process. Ions that readily dissociate upon collision have low transfer efficiencies; more stable ions can be transferred with up to 50% efficiency. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

10.
This study outlines some observations of the pressure effect for gas phase ion-molecule reactions of anthraquinone derivatives with dimethyl ether in an external source ion trap mass spectrometer. At the reagent pressure of 7.998 x 10(-2) Pa, formation of the protonated ions, [M + 13]+, [M + 15]+, and [M + 45]+ ions, of anthraquinones can be observed. However, at the pressure of 1.066 x 10(-2) Pa, formation of molecular ions and many fragment ions of the M+. or [M + H]+ ions have been observed. Since the pressure effect is notable within a small range of pressures for many compounds, it is important to draw attention to the use of the ion trap with an external source where other factors such as ion source residence time may play a role. This can also provide some information for better and more careful controls of the reagent pressure in order to obtain fair CI spectra in an external source ion trap mass spectrometer.  相似文献   

11.
This study presents a novel, simple and rapid procedure for isomer differentiation by combining gas chromatography (GC), a selective self-ion/molecule reaction (SSIMR) and tandem mass spectrometry (MS/MS) in an ion trap mass spectrometer (ITMS). SSIMR product ions were produced from four isomers. For aniline, SSIMR induces the formation of the molecular ion, [M+H](+), [M+CH](+), adduct ions of fragments ([M+F](+), where F represents fragment ions) and [2M-H](+). 2 and 3-Picoline produce [M+H](+), [2M-H](+) and [M+F](+), while 5-hexynenitrile produces [M+H](+), [M+F](+) and [2M+H](+) ions. The proposed method provides a relatively easy, rapid and efficient means of isomer differentiation via a SSIMR in the ITMS. Typically, isomer differentiation can be achieved within several minutes. The superiority of the SSIMR technique for isomer differentiation over electronic ionization (EI) is also demonstrated.  相似文献   

12.
A linear ion trap (LIT) with electrospray ionization (ESI) for top-down protein analysis has been constructed. An independent atmospheric sampling glow discharge ionization (ASGDI) source produces reagent ions for ion/ion reactions. The device is also meant to enable a wide variety of ion/ion reaction studies. To reduce the instrument's complexity and make it available for wide dissemination, only a few simple electronics components were custom built. The instrument functions as both a reaction vessel for gas-phase ion/ion reactions and a mass spectrometer using mass-selective axial ejection. Initial results demonstrate trapping efficiency of 70% to 90% and the ability to perform proton transfer reactions on intact protein ions, including dual polarity storage reactions, transmission mode reactions, and ion parking.  相似文献   

13.
The discontinuous atmospheric pressure interface (DAPI) has been developed to allow a direct transfer of ions from atmosphere into an ion trap mass spectrometer with minimum pumping capability. Air is introduced into the trap with ions and used as a buffer gas for the ion trap operation. In this study, a method of introducing helium as a second buffer gas was developed for a miniature mass spectrometer using a dual DAPI configuration. The buffer gas effects on the performance of a linear ion trap (LIT) with hyperbolic electrodes were characterized for ion isolation, fragmentation and a mass-selective instability scan. Significant improvement was obtained with helium for resolutions of mass analysis and ion isolation, while moderate advantage was gained with air for collision-induced dissociation. The buffer gas can be switched between air and helium for different steps within a single scan, which allows further optimization of the instrument performance for tandem mass spectrometry.  相似文献   

14.
An ion trap mass analyzer has been attached to an organic secondary ion microprobe. A pressure differential >100 can be maintained between the ion trap and microprobe. The well-focused secondary ion beam can transit a small (2 mm) diameter tube, but gas flow from ion trap to microprobe is impeded. This pressure differential allows the microprobe to retain imaging capability. Ion trap and microprobe data systems are integrated by taking advantage of the highly reproducible periodicity of the ion trap operating in resonant ejection mode and asynchronous signal and data acquisition afforded by commercially available interface cards. Secondary ion mass spectra and images obtained indicate an approximately 10-fold improvement in sensitivity, although preliminary evidence indicates low (<1%) trapping efficiency. Image data acquisition using the ion trap for mass analysis requires at least 10 times as much time compared to using a quadrupole mass filter because the mass-selected instability mode is used for mass analysis, i.e., mass resolution in the ion trap is not continuous as it is in the quadrupole.  相似文献   

15.
We report for the first time a coupling of gas-phase ion-molecule reactions with chromatographic separations on a quadrupole ion trap mass spectrometer. The interface was accomplished by using a pulsed valve for the introduction of a volatile neutral into the ion trap. The pulsed valve controller is synchronized with the mass spectrometer software. The setup requires some minor modifications to the vacuum system of the commercial quadrupole ion trap but most of the modifications are external to the mass spectrometer. Two applications of this interface are described: differentiation between two phosphoglucose positional isomers and detection of a phosphopeptide in a peptide mixture. Both applications are using the reactivity of trimethoxyborate towards a phosphate moiety in the negative ion mode. The detection of phosphopeptides hinges on our findings that non-phosphorylated peptide anions do not react with trimethoxyborate. This LC/MS detection can be easily visualized in terms of selected reaction monitoring.  相似文献   

16.
Polyethylene glycols react with CH3OCH2+ ions from dimethyl ether to form [M + 13]+ products. The [M + 13]+ ions are stabilized by intramolecular interactions involving the internal ether oxygen atoms and the terminal methylene group. Collisionally activated dissociation (CAD), including MSn and deuterium labeling experiments show that fragmentation reactions involving intramolecular cyclization are predominant. Scrambling of hydrogen and deuterium atoms in the ion-molecule reaction products is not indicated. The CAD spectra of the [M + 13]+ ions provide unambiguous assignment of the glycol size.  相似文献   

17.
18.
Novel results on the selective self-ion/molecule reactions (SSIMR) in both external and internal source ion trap mass spectrometers are demonstrated. Selective self-ion/molecule reaction product ions were produced between the oxygenated and nitrogenated crown ethers. For the oxygenated crown ethers, self-ion/molecule reactions lead to the formation of the protonated ions, adduct ions of fragments ([M + F](+)) and [M + H(3)O](+), while the nitrogenated crown ethers produce [M + H](+), [M + CH](+) and [M + C(2)H(3)](+) ions.  相似文献   

19.
A two-dimensional quadrupole ion trap mass spectrometer   总被引:8,自引:0,他引:8  
The use of a linear or two-dimensional (2-D) quadrupole ion trap as a high performance mass spectrometer is demonstrated. Mass analysis is performed by ejecting ions out a slot in one of the rods using the mass selective instability mode of operation. Resonance ejection and excitation are utilized to enhance mass analysis and to allow isolation and activation of ions for MS(n) capability. Improved trapping efficiency and increased ion capacity are observed relative to a three-dimensional (3-D) ion trap with similar mass range. Mass resolution comparable to 3-D traps is readily achieved, including high resolution at slower scan rates, although adequate mechanical tolerance of the trap structure is a requirement. Additional advantages of 2-D over 3-D ion traps are also discussed and demonstrated.  相似文献   

20.
By using a modified ion trap mass spectrometer, resolution in excess of 30,000 (FWHM) at m I z 502 is demonstrated. The method of increasing resolution in the ion trap mass spectrometer operated in the mass-selective instability mode depends on decreasing the rate of scanning the primary radio frequency amplitude as well as using resonance ejection at the appropriate frequency and amplitude. A theoretical basis for the method is introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号