首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependencies of the ferromagnetic resonance (FMR) linewidth and the resonance field-shift have been investigated for NiO/NiFe exchange-biased bilayers from 78 K to 450 K. A broad maximum in the linewidth of 500 Oe, solely due to the exchange-bias, is observed at ≈150 K when the magnetic field is applied along the film plane. When the magnetic field is applied perpendicular to the film plane, the maximum in the linewidth is less pronounced and amounts to 100 Oe at the same temperature. Such a behavior of the FMR linewidth is accompanied with a monotonic increase in the negative resonance field-shift with decreasing temperature. Our results are compared with the previous experimental FMR and Brillouin light scattering data for various ferromagnetic/antiferromagnetic (FM/AF) structures, and suggest that spin dynamics (spin-wave damping and anomalous resonance field-shift) in the FM/AF structures can be described in a consistent way by a single mechanism of the so-called slow-relaxation.  相似文献   

2.
The elastic anisotropy of Permalloy sheet is described by means of Fourier analysis by a free term and only one second harmonic. Analysis has shown that the rolling texture of Permalloy is formed by four mirror-symmetrical positions of the crystallites in which the (135) plane lies in the rolling plane and the direction with the indices [121] lies in the rolling direction.  相似文献   

3.
Permalloy with a body-centered-cubic structure has been grown on GaAs(001) by molecular beam epitaxy. Its magnetism, Curie temperature, and magnetic anisotropy are determined experimentally and compared to those of conventional face-centered-cubic Permalloy. Unexpectedly the vanishing magnetic cubic anisotropy in Permalloy is found to be independent of its atomic structure but depends only upon the stoichiometry of Fe and Ni in the FexNi1-x alloy. This observation is further investigated and confirmed by first-principles electronic band calculations, which help to understand the long-standing issue of why Permalloy should be a soft magnet.  相似文献   

4.
The magnetic properties of thin Permalloy films have been the subject of many investigations, but the work on their electrical properties is very limited [1]. By observing the change in electrical resistance with temperature the structural transformations taking place during the annealing of the condensates can be inferred.The authors of [1] did not undertake a detailed study of the electrical properties of Permalloy. They used Permalloy 79NMA in their investigation, and the dependence of the change in electrical resistance on the temperature of annealing in a magnetic field enabled them to reach conclusions about the nature of the uniaxial anisotropy of thin films.In the present work a detailed study has been made of the electrical resistance of Permalloy films in relation to the temperature of the substrate during evaporation and annealing; the temperature coefficient of resistance (TCR) has also been studied.  相似文献   

5.
Micron-sized ferromagnetic Permalloy disks exhibiting an in-plane ferromagnetic vortex structure are excited by a fast rise time perpendicular magnetic field pulse and their modal structure is analyzed. We find azimuthal and axial modes. By a Fourier filtering technique we can separate and analyze the time dependence of individual modes. Analysis of the experimental data demonstrates that the azimuthal modes damp more quickly than the axial modes. We interpret these results as mode conversion from low-frequency azimuthal modes to the fundamental mode which is higher in frequency, i.e., mode-mode coupling in a system with a single Landau-Lifshitz-Gilbert phenomenological damping constant alpha.  相似文献   

6.
The first observations of quasi-walls have been performed in the double Permalloy layers separated by a thin carbon layer. This structure was brought to light due to the high-resolution Kerr effect with digital contrast enhancement. The experimental results are in good agreement with the theoretical predictions.  相似文献   

7.
By direct imaging we determine spin structure changes in Permalloy wires and disks due to spin transfer torque as well as the critical current densities for different domain wall types. Periodic domain wall transformations from transverse to vortex walls and vice versa are observed, and the transformation mechanism occurs by vortex core displacement perpendicular to the wire. The results imply that the nonadiabaticity parameter beta does not equal the damping alpha, in agreement with recent theoretical predictions. The vortex core motion perpendicular to the current is further studied in disks revealing that the displacement in opposite directions can be attributed to different polarities of the vortex core.  相似文献   

8.
Qingrong Shao 《中国物理 B》2022,31(8):87503-087503
Exchange coupling across the interface between a ferromagnetic (FM) layer and an antiferromagnetic (AFM) or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy, which has been extensively studied due to the important application in magnetic materials and devices. In this work, we observed a fourfold magnetic anisotropy in amorphous CoFeB layer when exchange coupling to an adjacent FeRh layer which is epitaxially grown on an SrTiO3(001) substrate. As the temperature rises from 300 K to 400 K, FeRh film undergoes a phase transition from AFM to FM phase, the induced fourfold magnetic anisotropy in the CoFeB layer switches the orientation from the FeRh$\langle 110\rangle $ to FeRh$\langle 100\rangle $ directions and the strength is obviously reduced. In addition, the effective magnetic damping as well as the two-magnon scattering of the CoFeB/FeRh bilayer also remarkably increase with the occurrence of magnetic phase transition of FeRh. No exchange bias is observed in the bilayer even when FeRh is in the nominal AFM state, which is probably because the residual FM FeRh moments located at the interface can well separate the exchange coupling between the below pinned FeRh moments and the CoFeB moments.  相似文献   

9.
Interlayer exchange coupling that oscillates between antiferromagnetic and ferromagnetic as a function of NiO thickness has been observed in [Pt(5 A)/Co(4 A)](3)/NiO(t(NiO) A)/[Co(4 A)/Pt(5 A)](3) multilayers with out-of-plane anisotropy. The period of oscillation corresponds to approximately 2 monolayers of NiO. This oscillatory behavior is possibly attributed to the antiferromagnetic ordering in NiO. The antiferromagnetic interlayer exchange coupling for the 11 A NiO layer shows an increase in coupling strength with increasing temperature, in agreement with the quantum interference model of Bruno for insulating spacer layers. A coexistence of exchange biasing and antiferromagnetic interlayer exchange coupling has been observed below T=250 K.  相似文献   

10.
Inelastic neutron scattering experiments show that spin dynamics in the charge-ordered insulating ground state of the double layer perovskite YBaFe(2)O(5) is well described in terms of e(g) superexchange interactions. Above the Verwey transition at T(V)=308 K, t(2g) double exchange-type conduction proceeds within antiferromagnetic FeO(2)-BaO-FeO(2) double layers by an electron hopping process that requires a spin flip of the five-coordinated Fe ions, costing an energy of 5S(2) approximately 0.1 eV. The hopping process disrupts near-neighbor spin correlations, leading to massive damping of zone-boundary spin waves.  相似文献   

11.
When a V2O5 crystallite is placed on an anatase pellet and heated at 823–923 K, vanadium ions migrate over the surface of anatase grains enveloping them in a thin overlayer. XPS, X-ray and EPR studies show that at 823 K a very thin layer is formed, its properties being strongly modified by interaction with the anatase support. At 923 K, on top of this inner layer an outer layer migrates, whose properties are similar to V2O5. As in the same conditions no migration is observed on rutile, it is concluded that this phenomenon is a manifestation of wetting of one oxide by another oxide, the difference in the surface free energy being the driving force of the migration.  相似文献   

12.
Strongly frustrated magnetism of the metallic pyrochlore oxide Pr2Ir2O7 has been revealed by single crystal study. While Pr 4f moments have an antiferromagnetic RKKY interaction energy scale of /T*/ = 20 K mediated by Ir 5d-conduction electrons, no magnetic long-range order is found except for partial spin freezing at 120 mK. Instead, the Kondo effect, including a lnT dependence in the resistivity, emerges and leads to a partial screening of the moments below /T*/. Our results indicate that the underscreened moments show spin-liquid behavior below a renormalized correlation scale of 1.7 K.  相似文献   

13.
The influence of deposition power and seedlayer on the properties of hard magnet Co50Pt50 was studied. Co50Pt50(/Co90Fe10)/Ru/Co90Fe10 trilayer was used as pining/pinned layer in spin valves. The influences of different hard layer, soft layer and free layer on exchange bias, interlayer coupling, and magnetoresistance (MR) ratio were studied. Weak antiferromagnetic interlayer coupling was obtained by adjusting the thickness of hard and soft layers. MR of a spin valve with structure Cr2/CoFe0.5/CoPt4/CoFe0.5/Ru0.8/CoFe2.2/Cu2.05/CoFe2.6/Cu1.1/Ta1 reached 10.68% (unit in nm), which is comparable to those of IrMn-based synthetic spin valves. The increment of the coercivity of the free layer is mainly due to the static magnetic interaction between the hard layer and the free layer.  相似文献   

14.
Fe clusters have been synthesised in ultra-high-vacuum chamber using a gas-stabilized cluster aggregation method that ensures good control of the cluster size and naturally oxidized in order to obtain Fe/Fe oxide core-shell nanoparticles. The morphology of an individual nanoparticle, as revealed by transmission electron microscopy, consists of a Fe core of an average diameter of 4.4 nm surrounded by an oxide shell of uniform thickness of about 1.2 nm in average. The nanoparticles may be assimilated with a ferro-/antiferromagnetic (FM/AF) system. The morpho-structural features have been correlated with magnetic measurements on the core-shell nanoparticles. A significant exchange bias effect has been measured, when the sample was field-cooled under an applied field of 3 T. As the morphology of core-shell nanoclusters is much more complicated than in FM/AF bilayers of regular thickness due to the particular geometry of the coronal AF layer, the shape and surface anisotropy have to be taken into account for a correct interpretation of the magnetic data.  相似文献   

15.
YBa2Cu3O7−δ (YBCO) films with high critical current density (Jc) were successfully fabricated on nickel tapes buffered with epitaxial NiO. NiO was prepared on the textured nickel tape by the surface-oxidation epitaxy (SOE) method. We have reported so far a critical temperature (Tc) of 87 K and Jc=4–6×104 A/cm2 (77 K, 0 T) for the YBCO films on NiO/Ni tapes. To enhance the superconducting properties of the YBCO films on the SOE-grown NiO, depositions of thin oxide cap layers such as YSZ, CeO2, and MgO on NiO were investigated. These oxide cap layers were epitaxially grown on NiO and provided the template for the epitaxial growth of YBCO films. Substantially improved data of Tc=88 K and Jc=3×105 A/cm2 (77 K, 0 T) and 1×104 A/cm2 (77 K, Hc, 4 T) were obtained for YBCO film on NiO, by using a MgO cap layer with a thickness of 50 nm. The method described in this paper is a simple way to produce long YBCO tape conductors with high-Jc values.  相似文献   

16.
The spinmotive force associated with a moving domain wall is observed directly in Permalloy nanowires using real time voltage measurements with proper subtraction of the electromotive force. Whereas the wall velocity exhibits nonlinear dependence on magnetic field, the generated voltage increases linearly with the field. We show that the sign of the voltage reverses when the wall propagation direction is altered. Numerical simulations explain quantitatively these features of spinmotive force and indicate that it scales with the field even in a field range where the wall motion is no longer associated with periodic angular rotation of the wall magnetization.  相似文献   

17.
Structural, transport and magnetic properties of sputtered Ni80Fe20/Cu multilayers showing giant magnetoresistance (GMR) were studied using X-ray reflectometry and diffraction, transport measurements, ferromagnetic resonance (FMR), and magneto-optical Kerr effect. In particular, mechanisms of the GMR degradation at elevated temperatures were investigated. Multilayers with an individual layer thickness of 2 nm show a sharp drop of the GMR after annealing at about 250°C. Whereas below this temperature grain growth and defect reduction contribute to a partial improvement of the GMR, above ∼250°C interdiffusion between Ni and Cu appears to lead to layer intermixing and to the degradation of transport and magnetic properties. Moreover, the initial 〈1 1 1〉 texture sharpens, and strong tensile stresses arise in the layer stack. We correlated the structural alterations to changes in the magnetic properties such as the strength of the antiferromagnetic coupling (bilinear and biquadratic) and the magnetic anisotropy. Above 250°C an increasing magnetic inhomogeneity of the Permalloy layers can be inferred from the FMR linewidth broadening.  相似文献   

18.
Ferromagnetic La0.7Sr0.3MnO3 (LSMO) and antiferromagnetic La0.33Ca0.67MnO3 (LCMO) layers were grown on SrTiO3 (STO) substrates by the pulsed laser deposition technique. LSMO films had rougher surfaces and larger grain sizes than LCMO films. Fully strained bilayers, in which each layer was as thin as 10 nm, were prepared by changing their stacking sequences, i.e. LSMO/LCMO/STO and LCMO/LSMO/STO. The former had higher TC (350 K) than the latter (300 K), and exchange bias effects were only observed in the former bilayers. This revealed that microstructures could play an important role in the transport and magnetic properties of manganese oxide thin films.  相似文献   

19.
Magnetic transitions and magnetoresistance effect of the HfFe_6Ge_6-type Y_{0.9}La_{0.1}Mn_6Sn_6 compound have been investigated in the temperature range of 5-380K. The sample displays antiferromagnetic behaviour in the whole temperature range below Néel temperature T_N=309K. The metamagnetic transition from antiferromagnetism to ferromagnetism can be induced by an applied field. The metamagnetic transition field decreases monotonically from 2T at 5K to 0.4T at 300K. The giant magnetoresistance effect is observed with the metamagnetic behaviour, such as -10.4% at 245K under a field of 5T.  相似文献   

20.
Spin valves having thin oxide layers in the pinned and/or free layers were prepared by sputtering. MR ratios of the spin valves were increased from 8.1 to 11.9% by inserting the oxide layer into the pinned layer in Ta/PtMn/CoFe/Cu/CoFe/Ta spin valves. MR ratio of 13.9% and considerably large sheet ΔR of 2.55 Ω were obtained in the PtMn-based spin valves having the oxide layer in the pinned and free layer. Larger MR ratio of 17.3% and the sheet ΔR of 1.3 Ω were obtained in the PtMn-based dual-type spin valves having the oxide layer in both pinned layers. α-Fe2O3 based spin valves having thin oxide layers were also prepared. MR ratios of the spin valves were increased from 11.9 to 14.3% by inserting the oxide layer into the free layer in α-Fe2O3/CoFe/Cu/CoFe/Ta spin valves. The enhancement of the MR ratios may be attributed to the specular scattering effect of the conduction electrons by the thin oxide layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号