首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent research of massive fields quasinormal modes suggested that the arbitrary long living modes can be exist. Using different orders of WKB method, we study the massive scalar fields quasinormal modes of Schwarzschild–de Sitter black holes. It is shown that the WKB method can not applied for large massive scalar fields directly in asymptotic flat space-time but can fit well in de Sitter space-time. We prove the non-existence of QRMs in de Sitter space-time and find that the real parts of QNMs increase linearly and the imaginary parts approach to special values as the mass of scalar fields increase.  相似文献   

2.
The scalar and electromagnetic fields of charges uniformly accelerated in de Sitter spacetime are constructed. They represent the generalization of the Born solutions describing fields of two particles with hyperbolic motion in flat spacetime. In the limit Lambda-->0, the Born solutions are retrieved. Since in the de Sitter universe the infinities I+/- are spacelike, the radiative properties of the fields depend on the way in which a given point of I+/- is approached. The fields must involve both retarded and advanced effects: Purely retarded fields do not satisfy the constraints at the past infinity I-.  相似文献   

3.
We study Abelian strings in a fixed de Sitter background. We find that the gauge and Higgs fields extend smoothly across the cosmological horizon and that the string solutions have oscillating scalar fields outside the cosmological horizon for all currently accepted values of the cosmological constant. If the gauge to Higgs boson mass ratio is small enough, the gauge field function has a power-like behaviour, while it is oscillating outside the cosmological horizon if Higgs and gauge boson mass are comparable. Moreover, we observe that Abelian strings exist only up to a maximal value of the cosmological constant and that two branches of solutions exist that meet at this maximal value. We also construct radially excited solutions that only exist for non-vanishing values of the cosmological constant and are thus a novel feature as compared to flat space–time. Considering the effect of the de Sitter string on the space–time, we observe that the deficit angle increases with increasing cosmological constant. Lensed objects would thus be separated by a larger angle as compared to asymptotically flat space–time.  相似文献   

4.
We study the Lie algebras of the covariant representations transforming the matter fields under the de Sitter isometries. We point out that the Casimir operators of these representations can be written in closed forms and we deduce how their eigenvalues depend on the field’s rest energy and spin. For the scalar, vector and Dirac fields, which have well-defined field equations, we express these eigenvalues in terms of mass and spin obtaining thus the principal invariants of the theory of free fields on the de Sitter spacetime. We show that in the flat limit we recover the corresponding invariants of the Wigner irreducible representations of the Poincaré group.  相似文献   

5.
Global properties of static, spherically symmetric configurations with scalar fields of sigma-model type with arbitrary potentials are studied in D dimensions, including models where the space-time contains multiple internal factor spaces. The latter are assumed to be Einstein spaces, not necessarily Ricci-flat, and the potential V includes a contribution from their curvatures. The following results generalize those known in four dimensions: (A) a no-hair theorem on the nonexistence, in case V 0, of asymptotically flat black holes with varying scalar fields or moduli fields outside the event horizon; (B) nonexistence of particlelike solutions in field models with V 0; (C) nonexistence of wormhole solutions under very general conditions; (D) a restriction on possible global causal structures (represented by Carter-Penrose diagrams). The list of structures in all models under consideration is the same as is known for vacuum with a cosmological constant in general relativity: Minkowski (or AdS), Schwarzschild, de Sitter and Schwarzschild – de Sitter, and horizons which bound a static region are always simple. The results are applicable to various Kaluza-Klein, supergravity and stringy models with multiple dilaton and moduli fields.  相似文献   

6.
We calculate the one-loop, off-shell, effective action in O(4) gauged supergravity assuming an (anti) de Sitter metric and constant scalar fields as a background. The problem of the large induced Λ term (present already for free matter fields) is stressed and the possibility of dynamical breakdown of local supersymmetry is pointed out. We illustrate our techniques and qualitative conclusions on a number of examples, including Ø4 theory and QED scalar potentials on a de Sitter background and an effective action in Einstein theory with a cosmological constant. Possible solutions of the Λ-term problem are also discussed.  相似文献   

7.
We employ de Sitter isometry to study a mixed symmetric rank-3 tensor field in de Sitter space by finding the field equation, solution and two-point function which are conformally invariant. It is proved that such a tensor field plays a key role in conformal theory of linear gravity (Binegar et al., Phys. Rev. D 27, 2249, 1983) . In de Sitter space from the group theoretical point of view this kind of tensor could associate with two unitary irreducible representations (UIR) of the de Sitter group (Takook et al., J.Math. Phys. 51, 032503, 2010), which one representation has a flat limit, namely, in zero curvature coincides to the UIR of Poincaré group, however, the second one which is named as auxiliary field, becomes significant in the study of conformal gravity in de Sitter background. We show that the rank-3 tensor solution can be written in terms of a massless minimally coupled scalar field and also the related two-point function is a function of a massless minimally coupled scalar two-point function.  相似文献   

8.
The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-spectrum – certainly one of the most successful predictions of modern cosmology – is widely believed to be inconsistent with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is not a necessary consequence of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e. the discrete series of representations of the de Sitter group, that suffer from similar strong IR effects.  相似文献   

9.
We show that it is possible to locate the event horizon of a black hole (in arbitrary dimensions) by the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter), black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon.  相似文献   

10.
Braneworld models may yield interesting effects ranging from high-energy physics to cosmology, or even some low-energy physics. Their mode structure modifies standard results in these physical realms that can be tested and used, for example, to set bounds on the models parameters. Now, to define braneworld deviations from standard 4D physics, a notion of matter and gravity localization on the brane is crucial. In this work we investigate the localization of universal massive scalar fields in a de Sitter thick tachyonic braneworld generated by gravity coupled to a tachyonic bulk scalar field. This braneworld possesses a 4D de Sitter induced metric and is asymptotically flat despite the presence of a negative bulk cosmological constant, a novel and interesting peculiarity that contrasts with previously known models. It turns out that universal scalar fields can be localized in this expanding braneworld if their bulk mass obeys an upper bound, otherwise the scalar fields delocalize: The dynamics of the scalar field is governed by a Schrödinger equation with an analog quantum mechanical potential of modified Pöschl–Teller type. This potential depends on the bulk curvature of the braneworld system as well as on the value of the bulk scalar field mass. For masses satisfying a certain upper bound, the potential displays a negative minimum and possesses a single massless bound state separated from the Kaluza–Klein (KK) massive modes by a mass gap defined by the Hubble (expansion scale) parameter of the 3-brane. As the bulk scalar field mass increases, the minimum of the quantum mechanical potential approaches a null value and, when the bulk mass reaches certain upper bound, it becomes positive (eventually transforming into a potential barrier), leading to delocalization of the bulk scalar field from the brane. We present analytical expressions for the general solution of the Schrödinger equation. Thus, the KK massive modes are given in terms of general Heun functions as well as the expression for the massless zero mode, giving rise to a new application of these special functions.  相似文献   

11.
We study scalar condensations around asymptotically Anti-de Sitter (AdS) regular reflecting shells. We show that the charged scalar field can condense around charged reflecting shells with both Dirichlet and Neumann boundary conditions. In particular, the radii of the asymptotically AdS hairy shells are discrete, which is similar to cases in asymptotically flat spacetimes. We also provide upper bounds for the radii of the hairy Dirichlet reflecting shells and above the bound, the scalar field cannot condense around the shell.  相似文献   

12.
The problem of the flat limits of the scalar and spinor fields on the de Sitter expanding universe is considered in the traditional adiabatic vacuum and in the new rest frame vacuum we proposed recently,in which the frequencies are separated in the rest frames as in special relativity.It is shown that only in the rest frame vacuum can the Minkowskian flat limit be reached naturally fbr any momentum,whereas in the adiabatic vacuum,this limit remains undefined in rest frames in which the momentum vanishes.An important role is played by the phases of the fundamental solutions in the rest frame vacuum,which must be regularized to obtain the desired Minkowskian flat limits.This procedure fixes the phases of the scalar mode functions and Dirac spinors,resulting in their definitive expressions derived here.The physical consequenee is that,in the rest frame vacuum,the flat limits of the oneparticle operators are simply the corresponding operators of special relativity.  相似文献   

13.
14.
《Nuclear Physics B》1988,303(4):728-750
We identify the quantum theory of cosmological perturbations with the quantum field theory in curved spacetime with emphasis on its field concept. We materialize this idea by using a coherent state as a quantum analogue of a nontrivial classical field configuration. We present analytic results in a de Sitter universe for the massless and massive minimal free scalar fields. Some new features on the spectrum of perturbations are obtained for the massive case. We also show how such quantum field theories can be derived from quantum gravity using the semiclassical approximation. A physical degree of freedom is picked up from three scalar perturbations in the quantum gravity scalar system and its Schrödinger equation is derived. Peculiar features of quantum fields at imaginary time and its possible implications on boundary conditions for the wave function of the universe are also discussed.  相似文献   

15.
The vacuum expectation values of the energy-momentum tensor of quantized scalar and spinor fields in a de Sitter space of the first kind are calculated. Limiting cases of the obtained exact expressions are considered. It is noted that the de Sitter space is a self-consistent solution of the Einstein equations with allowance for quantum vacuum fluctuations of massless fields.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 67–70, January, 1981.I thank V. M. Mostepanenko and B. N. Sharapov for numerous helpful discussions.  相似文献   

16.
An effective potential in de Sitter space is calculated for a model of two interacting scalar fields in one-loop approximation and in a self-consistent approximation which takes into account an infinite set of diagrams. Various approaches to renormalization in de Sitter space are discussed. The results are applied to analyze the phase transition in the Hawking-Moss version of the inflationary universe scenario. Requiring that inflation is sufficiently large, we derive constraints on the parameters of the model.  相似文献   

17.
By recognizing the resemblance of the de Sitter group algebra to that of the conformal group, the method by which manifestly conformally covariant field equations in sixdimensional space are rewritten in Minkowski space is adapted to fields in flat five-dimensional space, the embedding space of de Sitter space. A quantum action principle based solely on rotational invariance in five-dimensional space is devised, and the resulting commutation relations are shown to correspond to the correct ones in curved four-space. As well as recovering the ten conservation laws associated with de Sitter group invariance, the five extra conservation laws present whenever conformal symmetry holds are determined directly in five-space. The derivation is found to be complicated by a new feature—the Lagrangian density does not transform as a field either for special conformal transformations or for dilations; this is true only for the former transformations in flat space.  相似文献   

18.
In this paper we study the Casimir effect for conformally coupled massless scalar fields on background of Static dS4+1 spacetime. We will consider the general plane–symmetric solutions of the gravitational field equations and boundary conditions of the Dirichlet type on the branes. Then we calculate the vacuum energy-momentum tensor in a configuration in which the boundary branes are moving by uniform proper acceleration in static de Sitter background. Static de Sitter space is conformally related to the Rindler space, as a result we can obtain vacuum expectation values of energy-momentum tensor for conformally invariant field in static de Sitter space from the corresponding Rindler counterpart by the conformal transformation.  相似文献   

19.
The quantum entropies due to the scalar and Dirac fields are investigated in a pure de Sitter spacetime. The leading divergent terms in both cases are regularized by the Pauli-Villars scheme. It is shown that the explosive entropies can be renormalized according to the Bekenstein-Hawking formula.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号