首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low-energy electronic structure of the itinerant metamagnet Sr3Ru2O7 is investigated by angle-resolved photoemission and density-functional calculations. We find well-defined quasiparticle bands with resolution-limited linewidths and Fermi velocities up to an order of magnitude lower than in single layer Sr2RuO4. The complete topography, the cyclotron masses, and the orbital character of the Fermi surface are determined, in agreement with bulk sensitive de Haas-van Alphen measurements. An analysis of the dxy band dispersion reveals a complex density of states with van Hove singularities near the Fermi level, a situation which is favorable for magnetic instabilities.  相似文献   

2.
We employ a combination of chemical substitution and angle resolved photoemission spectroscopy to prove that the Fermi level in the gamma band of Sr(2-y)La(y)RuO(4) can be made to traverse a van Hove singularity. Remarkably, the large mass renormalization has little dependence on either k or doping. By combining the results from photoemission with thermodynamic measurements on the same batches of crystals, we deduce a parametrization of the full many-body quasiparticle dispersion in Sr(2)RuO(4) which extends from the Fermi level to approximately 20 meV above it.  相似文献   

3.
The bulk-representative low-energy spectrum of Sr2RuO4 can be directly measured by angle-resolved photoemission. We find that the quasiparticle spectral line shape of Sr2RuO4 is sensitive to both temperature and momentum. Along the (0,0)-(pi,0) direction, both gamma and beta bands develop a sharp quasiparticle peak near k(F) at low temperatures, but as the temperature increases the spectra quickly lose coherent weight and become broad backgrounds above approximately 130 K, which is the metal-nonmetal crossover temperature, T(M), in the c-axis resistivity. However, spectra along the (0,0)-(pi,pi) direction evolve smoothly across T(M). A simple transport model can describe both in-plane and c-axis resistivity in terms of the quasiparticle line shape. Comparisons are also made to the cuprates, with implications for two dimensionality, magnetic fluctuations, and superconductivity.  相似文献   

4.
Using polarization- and hν-dependent angle-resolved photoemission spectroscopy, we uncovered the fine details of a quasiparticle's dynamics of a typical multiband superconductor, Sr2RuO4. We found strong hybridization between the in-plane and out-of-plane quasiparticles via the Coulomb and spin-orbit interactions. This effect enhances the quasiparticle mass due to the inflow of out-of-plane quasiparticles into the two-dimensional Fermi surface sheet, where the quasiparticles are further subjected to the multiple electron-boson interactions. We suggest that the spin-triplet p-wave superconductivity of Sr2RuO4 is phonon mediated.  相似文献   

5.
Multiband quasiparticle calculations based on perturbation theory and dynamical mean-field methods show that the creation of a photoemission hole state in Sr2RuO4 is associated with a highly anisotropic self-energy. Since the narrow Ru-derived d(xz,yz) bands are more strongly distorted by Coulomb correlations than the wide d(xy) band, charge is partially transferred from d(xz,yz) to d(xy), thereby shifting the d(xy) Van Hove singularity close to the Fermi level.  相似文献   

6.
The question of the anisotropy of the electron scattering in high temperature superconductors is investigated using high resolution angle-resolved photoemission data from Pb-doped Bi2Sr2CaCu2O8 (Bi2212) with suppressed superstructure. The scattering rate of low energy electrons along two bilayer-split pieces of the Fermi surface is measured (via the quasiparticle peak width), and no increase of scattering towards the antinode (pi,0) region is observed, contradicting the expectation from Q=(pi,pi) scattering. The results put a limit on the effects of Q=(pi,pi) scattering on the electronic structure of this overdoped superconductor with still very high T(c).  相似文献   

7.
We present a first-principles calculation of the quasiparticle electronic structure of ethylene adsorbed on the dimer reconstructed Si(001)-(2x1) surface. Within the GW approximation, the self-energy corrections for the adsorbate states are found to be about 1.5 eV larger than those for the states derived from bulk silicon. The calculated quasiparticle band structure is in excellent agreement with photoemission spectra. Finally, the effects of the quasiparticle corrections on the scanning tunneling microscope images of the adsorbed molecules are shown to be important as the lowering of the C2H4 energy levels within GW strongly reduces their tunneling probability.  相似文献   

8.
The low-energy electronic structure of the nearly optimally doped trilayer cuprate superconductor Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta) is investigated by angle-resolved photoemission spectroscopy. The normal state quasiparticle dispersion and Fermi surface and the superconducting d-wave gap and coherence peak are observed and compared with those of single- and bilayer systems. We find that both the superconducting gap magnitude and the relative coherence-peak intensity scale linearly with T(c) for various optimally doped materials.  相似文献   

9.
We study the effects of quasiparticle interactions on disorder-induced localization of Dirac-like nodal excitations in superconducting high- Tc cuprates. As suggested by the experimental angle-resolved photoemission spectroscopy and terahertz conductivity data in Bi2Sr2CaCu2O(8+delta), we focus on the interactions mediated by the order parameter fluctuations near an incipient second pairing transition d --> d + is(id'). We find interaction corrections to the density of states, specific heat, and conductivity as well as phase and energy relaxation rates and assess the applicability of the recent localization scenarios for noninteracting random Dirac fermions to the cuprates.  相似文献   

10.
We report an angular resolved photoemission study of NaxCoO2 with x approximately 0.73 where it is found that the renormalization of the quasiparticle (QP) dispersion changes dramatically upon a rotation from GammaM to GammaK. The comparison of the experimental data to the calculated band structure reveals that the quasiparticle renormalization is most pronounced along the GammaK direction, while it is significantly weaker along the GammaM direction. We discuss the observed anisotropy in terms of multiorbital effects and point out the relevance of magnetic correlations for the band structure of NaxCoO2 with x approximately 0.75.  相似文献   

11.
The electronic structure of SmOFeAs, a parent compound of iron arsenic superconductors, is measured by angle resolved photoemission spectroscopy. Due to the surface contribution, the measured electronic structure deviates strongly from the calculations. One of the bulk bands is identified by photon energy dependence measurements. Moreover, the appearance of sharp quasiparticle peaks at low temperatures implies the drastic reduction of the scattering rate. No energy gap is observed at Fermi level, indicating that the Fermi surface nesting is irrelevant in the spin density wave formation.  相似文献   

12.
We investigate the electronic structure of LiV2O4, for which heavy-fermion behavior has been observed in various experiments, by the combination of the local density approximation and dynamical mean field theory. To obtain results at zero temperature, we employ the projective quantum Monte Carlo method as an impurity solver. Our results show that the strongly correlated a 1g band is a lightly doped Mott insulator which, at low temperatures, shows a sharp (heavy) quasiparticle peak just above the Fermi level, which is consistent with recent photoemission experiments by Shimoyamada et al. [Phys. Rev. Lett. 96, 026403 (2006)10.1103/PhysRevLett.96.026403].  相似文献   

13.
Electronic structures of the 4d transition-metal oxide compound Sr2RhO4 are investigated by angle-resolved photoemission spectroscopy and density-functional electronic structure calculations. In the measured Fermi surfaces (FS) of Sr2RhO4, the xy-band FS sheet expected from the well-established results of the FS of Sr2RuO4 is missing, the volume of which should be different only by one additional electron for Sr2RhO4. The apparent contradiction is resolved by a careful analysis of the band structure where the rotation of octahedra results in the hybridization of e(g) and t(2g) states and thus plays a key role in the determination of the electronic structure near EF. The modification of the FS structure due to the distorted lattice is related to the charge transfer among the orbital states and suggested to be relevant to the metal-insulator transition in Ca(2-x)Sr(x)RuO4.  相似文献   

14.
Evidence for the validity of the pairing glue interpretation of high temperature superconductivity is presented using a modified Eliashberg analysis of experimental superconductor-insulator-superconductor (SIS) tunneling data in B2Sr2CaCu2O8 (Bi2212) over a wide range of doping. This is accomplished by extracting detailed information on the diagonal and anomalous contributions to the quasiparticle self-energy. In particular, a comparison of the imaginary part of the anomalous self-energy ImΦ(ω) and the pairing glue spectral function α2F(ω) used in the model is consistent with Hubbard model simulations in the literature. In addition, the real part of the diagonal self-energy for optimal doped Bi2212 bears a strong resemblance to that obtained from photoemission experiments.  相似文献   

15.
The superconducting gap function of Sr2RuO4 was investigated by means of quasiparticle reflection and transmission at the normal conductor-superconductor interface of Sr2RuO4-Pt point contacts. We found two distinctly different types of dV/dI vs V spectra either with a double-minimum structure or with a zero-bias conductance anomaly. Both types of spectra are expected in the limit of high and low transparency, respectively, of the interface barrier between a normal metal and a spin-triplet superconductor. Together with the temperature dependence of the spectra this result strongly supports a spin-triplet superconducting order parameter for Sr2RuO4.  相似文献   

16.
High-resolution photoemission has been used to study the electronic structure of the charge-density wave (CDW) and superconducting dichalcogenide, 2H-NbSe2. From the extracted self-energies, important components of the quasiparticle interactions have been identified. In contrast to previously studied TaSe2, the CDW transition does not affect the electronic properties significantly. The electron-phonon coupling is identified as a dominant contribution to the quasiparticle self-energy and is shown to be very anisotropic (k dependent) and much stronger than in TaSe2.  相似文献   

17.
Results from the study of a highly overdoped (OD) Bi(2)Sr(2)CaCu(2)O(8+delta) with a T(c) = 51 K using angle-resolved photoemission spectroscopy are presented. We observe a sharp peak in the spectra near ( pi,0) that persists well above T(c), a nodal self-energy which approaches that seen for the Mo(110) surface state, and a more k-independent line shape at the Fermi surface than the lower-doped cuprates. This allows for a realistic comparison of the lifetime values to the experimental resistivity measurements. These observations point to the validity of the quasiparticle picture for the OD even in the normal state.  相似文献   

18.
We discuss the notions of spin-orbital polarization and ordering in paramagnetic materials, and address their consequences in transition-metal oxides. Extending the combined density functional and dynamical mean field theory scheme to the case of materials with large spin-orbit interactions, we investigate the electronic excitations of the paramagnetic phases of Sr(2)IrO(4) and Sr(2)RhO(4). We show that the interplay of spin-orbit interactions, structural distortions and Coulomb interactions suppresses spin-orbital fluctuations. As a result, the room temperature phase of Sr(2)IrO(4) is a paramagnetic spin-orbitally ordered Mott insulator. In Sr(2)RhO(4), the effective spin-orbital degeneracy is reduced, but the material remains metallic, due to both, smaller spin-orbit and smaller Coulomb interactions. The corresponding spectra are in excellent agreement with photoemission data. Finally, we make predictions for the spectra of paramagnetic Sr(2)IrO(4).  相似文献   

19.
The coupling of metallic core electrons to the density fluctuations of the conduction electrons is studied. Due to the strong electron-plasmon coupling there is a characteristic satellite structure in the core electron spectrum, starting at the plasma energy p below the quasiparticle level and with a maximal spectral weight at (1.6–2.5)× p below the same level. The total spectral weight in the satellite band is 50–100 percent of the quasiparticle weight, the actual value dependent on the density of the conduction electrons. The possible implications on X-ray photoemission, soft X-ray emission and absorption, and inelastic scattering of electrons are drawn. Particularly, a close correspondence with the location of the fine structure of the L2,3 absorption spectrum of Al is found. The relation to the cohesive energy is also considered.  相似文献   

20.
We calculate the magnetic and quasiparticle excitation spectra of an itinerant J(1)-J(2) model for iron-pnictide superconductors. In addition to an acoustic spin-wave branch, the magnetic spectrum has a second, optical branch, resulting from the coupled four-sublattice magnetic structure. The spin-wave velocity has also a planar directional anisotropy, due to the collinear or striped antiferromagnetism. Within the magnetically ordered phase, the quasiparticle spectrum is composed of two Dirac cones, resulting from the folding of the magnetic Brillouin zone. We discuss the relevance of our findings to the understanding of both neutron scattering and photoemission spectroscopy results for SrFe(2)As(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号