首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zhi Zhu He 《Annals of Physics》2010,325(2):359-366
This paper presents a theoretical investigation of dynamics of interface (wave front) in three-dimensional (3D) reaction-diffusion (RD) system for bistable media with anisotropy constructed by means of anisotropic surface tension. An equation of motion for the wave front is derived to carry out stability analysis of transverse perturbations, which discloses mechanism of pattern formation such as labyrinthine in 3D bistable media. Particularly, the effects of anisotropy on wave propagation are studied. It was found that, sufficiently strong anisotropy can induce dynamical instabilities and lead to breakup of the wave front. With the fast-inhibitor limit, the bistable system can further be described by a variational dynamics so that the boundary integral method is adopted to study the dynamics of wave fronts.  相似文献   

3.
We study the spatiotemporal dynamics of a crack front propagating at the interface between a rigid substrate and an elastomer. We first characterize the kinematics of the front when the substrate is homogeneous and find that the equation of motion is intrinsically nonlinear. We then pattern the substrate with a single defect. Steady profiles of the front are well described by a standard linear theory with nonlocal elasticity, except for large slopes of the front. In contrast, this theory seems to fail in dynamical situations, i.e., when the front relaxes to its steady shape, or when the front pinches off after detachment from a defect. More generally, these results may impact the current understanding of crack fronts in heterogeneous media.  相似文献   

4.
We have studied spontaneous imbibition fronts generated by capillary rise between two roughened glass plates, the separation d of which varied between 10 and 50 microm. Perfect agreement with Washburn's law was obtained. We have determined the roughness exponent chi of the fronts, and found chi=0.81+/-0.01 for small length scales. Above a certain crossover length xi, it reached chi=0.58+/-0.04, as predicted by the quenched noise Kardar-Parisi-Zhang equation. The crossover length is found to scale with the plate separation as sqrt[d], as predicted by recent models which properly include nonlocal dynamics effects on the front. We believe this to be the first clear identification of crossover from nonlocal to local dynamics.  相似文献   

5.
We present a general method for studying front propagation in nonlinear systems with a global constraint in the language of hybrid tank models. The method is illustrated in the case of semiconductor superlattices, where the dynamics of the electron accumulation and depletion fronts shows complex spatiotemporal patterns, including chaos. We show that this behavior may be elegantly explained by a tank model, for which analytical results on the emergence of chaos are available. In particular, for the case of three tanks the bifurcation scenario is characterized by a modified version of the one-dimensional iterated tent map.  相似文献   

6.
We study the evolution of fronts in a bistable reaction-diffusion system when the nonlinear reaction term is spatially inhomogeneous. This equation has been used to model wave propagation in various biological systems. Extending previous works on homogeneous reaction terms, we derive asymptotically an equation governing the front motion, which is strongly nonlinear and, for the two-dimensional case, generalizes the classical mean curvature flow equation. We study the motion of one- and two-dimensional fronts, finding that the inhomogeneity acts as a "potential function" for the motion of the front; i.e., there is wave propagation failure and the steady state solution depends on the structure of the function describing the inhomogeneity. (c) 2001 American Institute of Physics.  相似文献   

7.
The dynamics of fronts, or kinks, in dispersive media with gain and losses is considered. It is shown that the front parameters, such as the velocity and width, depend on initial conditions. This result is not typical for dissipative systems. For exponentially decreasing initial conditions, the relations for the front parameters are found. A presence of the global bifurcation, when a soliton solution is replaced by the front solution, is demonstrated. It is also shown that in order to observe fronts, the front velocity should be larger than the characteristic velocity of the modulational instability.  相似文献   

8.
Surface tension driven convection affects the propagation of chemical reaction fronts in liquids. The changes in surface tension across the front generate this type of convection. The resulting fluid motion increases the speed and changes the shape of fronts as observed in the iodate-arsenous acid reaction. We calculate these effects using a thin front approximation, where the reaction front is modeled by an abrupt discontinuity between reacted and unreacted substances. We analyze the propagation of reaction fronts of small curvature. In this case the front propagation equation becomes the deterministic Kardar-Parisi-Zhang (KPZ) equation with the addition of fluid flow. These results are compared to calculations based on a set of reaction-diffusion-convection equations.  相似文献   

9.
10.
We study oscillatory and chaotic reaction fronts described by the Kuramoto-Sivashinsky equation coupled to different types of fluid motion. We first apply a Poiseuille flow on the fronts inside a two-dimensional slab. We show regions of period doubling transition to chaos for different values of the average speed of Poiseuille flow. We also analyze the effects of a convective flow due to a Rayleigh-Taylor instability. Here the front is a thin interface separating two fluids of different densities inside a two-dimensional vertical slab. Convection is caused by buoyancy forces across the front as the lighter fluid is under a heavier fluid. We first obtain oscillatory and chaotic solutions arising from instabilities intrinsic to the front. Then, we determine the changes on the solutions due to fluid motion.  相似文献   

11.
The nonequilibrium Ising-Bloch front bifurcation of the FitzHugh-Nagumo model with nondiffusing inhibitor provides a beautiful instance of an extended bistable system made up of propagating (Bloch) fronts. Moreover, these fronts are chiral and parity-related, and the barrier between them is nonetheless but a stationary Ising front. By means of numerical simulation in the neighborhood of this bifurcation, we demonstrate the existence of stochastic resonance in the transition between Bloch fronts of opposite chiralities, when an additive noise is included. The signal-to-noise ratio is numerically observed to scale with the distance to the critical point. This scaling law is theoretically characterized in terms of an effective nonequilibrium potential.  相似文献   

12.
We prove the existence of global solutions to a coupled system of Navier–Stokes, and reaction-diffusion equations (for temperature and mass fraction) with prescribed front data on an infinite vertical strip or tube. This system models a one-step exothermic chemical reaction. The heat release induced volume expansion is accounted for via the Boussinesq approximation. The solutions are time dependent moving fronts in the presence of fluid convection. In the general setting, the fronts are subject to intensive Rayleigh-Taylor and thermal-diffusive instabilities. Various physical quantities, such as fluid velocity, temperature, and front speed, can grow in time. We show that the growth is at most for large time t by constructing a nonlinear functional on the temperature and mass fraction components. These results hold for arbitrary order reactions in two space dimensions and for quadratic and cubic reactions in three space dimensions. In the absence of any thermal-diffusive instability (unit Lewis number), and with weak fluid coupling, we construct a class of fronts moving through shear flows. Although the front speeds may oscillate in time, we show that they are uniformly bounded for large t. The front equation shows the generic time-dependent nature of the front speeds and the straining effect of the flow field. Received: 15 January 1996 / Accepted: 2 September 1997  相似文献   

13.
Autocatalytic reaction fronts generate density gradients that may lead to convection. Fronts propagating in vertical tubes can be flat, axisymmetric, or nonaxisymmetric, depending on the diameter of the tube. In this paper, we study the transitions to convection as well as the stability of different types of fronts. We analyze the stability of the convective reaction fronts using three different models for front propagation. We use a model based on a reaction-diffusion-advection equation coupled to the Navier-Stokes equations to account for fluid flow. A second model replaces the reaction-diffusion equation with a thin front approximation where the front speed depends on the front curvature. We also introduce a new low-dimensional model based on a finite mode truncation. This model allows a complete analysis of all stable and unstable fronts.  相似文献   

14.
The boiling-up of a metastable liquid with appearing vaporization fronts is theoretically considered. The boiling-up occurs usually on the surface of a heater. At the initial stage, growth of a spherical vapor bubble is observed. If the temperature of the liquid exceeds a threshold value, the vaporization fronts develop near the line of contact of a vapor bubble and the heater. The vaporization fronts extend along the heater with a constant speed. A model of steady propagation of the vaporization front is developed. The temperature and propagation velocity of the interface are determined from the balance equations of mass, momentum, and energy in the neighborhood of the vaporization front and from the stability condition of motion of the interface. It is shown that a solution of these equations exists only if the liquid is heated above a threshold value. The propagation velocity of the vaporization front also has the threshold value. The calculated velocity of interface motion and the threshold value of temperature are in reasonable agreement with available experimental data for various liquids within wide ranges of saturation pressures and temperatures of the overheated liquid.  相似文献   

15.
Bacterial colonies often generate patterns that are characterized by fingerlike projections growing out of the propagating front. In this paper, we analyze the traveling wave fronts in bacterial growth model that accounts for chemotactic movement as well as random motion in density-dependent diffusion. Specifically, the existence of traveling wave solutions to model equations is examined by means of methods of local linear and nonlinear analysis, and numerical simulations. The occurrence is shown of both sharp and smooth traveling wave fronts.  相似文献   

16.
Multistable coupled map lattices typically support traveling fronts, separating two adjacent stable phases. We show how the existence of an invariant function describing the front profile allows a reduction of the infinitely dimensional dynamics to a one-dimensional circle homeomorphism, whose rotation number gives the propagation velocity. The mode locking of the velocity with respect to the system parameters then typically follows. We study the behavior of fronts near the boundary of parametric stability, and we explain how the mode locking tends to disappear as we approach the continuum limit of an infinite density of sites.  相似文献   

17.
We study the dynamics of fronts when both inertial effects and external fluctuations are taken into account. Stochastic fluctuations are introduced as multiplicative white noise arising from a control parameter of the system. Contrary to the non-inertial (overdamped) case, we find that important features of the system, such as the velocity selection picture, are not modified by the noise. We then compute the overdamped limit of the underdamped dynamics in a more careful way, finding that it does not exhibit any effect of noise either. Our result poses the question as to whether or not external noise sources can be measured in physical systems of this kind. Received 2 July 1999 and Received in final form 25 November 1999  相似文献   

18.
In this paper, we consider the global well-posedness and long-time dynamics for the three-dimensional viscous primitive equations describing the large-scale oceanic motion under a random forcing, which is an additive white in time noise. We firstly prove the existence and uniqueness of global strong solutions to the initial boundary value problem for the stochastic primitive equations. Subsequently, by studying the asymptotic behavior of strong solutions, we obtain the existence of random attractors for the corresponding random dynamical system.  相似文献   

19.
The Busse–Heikes dynamical model is described in terms of relaxational and non-relaxational dynamics. Within this dynamical picture a diverging alternating period is calculated in a reduced dynamics given by a time-dependent Hamiltonian with decreasing energy. A mean period is calculated which results from noise stabilization of a mean energy. The consideration of spatial-dependent amplitudes leads to vertex formation. The competition of front motion around the vertices and the Küppers–Lortz instability in determining an alternating period is discussed.  相似文献   

20.
We studied the propagation of traveling fronts into an unstable state of the reaction-transport systems involving integral transport. By using a hyperbolic scaling procedure and singular perturbation techniques, we determined a Hamiltonian structure of reaction-transport equations. This structure allowed us to derive asymptotic formulas for the propagation rate of a reaction front. We showed that the macroscopic dynamics of the front are "nonuniversal" and depend on the choice of the underlying random walk model for the microscopic transport process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号