首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed high-resolution angle-resolved photoemission spectroscopy on electron-doped high-Tc superconductor Pr0.89LaCe0.11CuO4 to study the anisotropy of the superconducting gap. The observed momentum dependence is basically consistent with the dx2-y2- wave symmetry, but obviously deviates from the monotonic dx2-y2- gap function. The maximum gap is observed not at the zone boundary, but at the hot spot where the antiferromagnetic spin fluctuation strongly couples to the electrons on the Fermi surface. The present experimental results suggest the spin-mediated pairing mechanism in electron-doped high-Tc superconductors.  相似文献   

2.
We propose a weakly coupled two-band model with dx(2)(-y(2)) pairing symmetry to account for the anomalous temperature dependence of superfluid density rho(s) in electron-doped cuprate superconductors. This model gives a unified explanation to the presence of an upward curvature in rho(s) near T(c) and a weak temperature dependence of rho(s) in low temperatures. Our work resolves a discrepancy in the interpretation of different experimental measurements and suggests that the pairing in electron-doped cuprates has predominately dx(2)(-y(2)) symmetry in the whole doping range.  相似文献   

3.
We performed a phase-sensitive test of the symmetry of the superconducting order parameter of the electron doped cuprate La(2-x)Ce(x)CuO(4-y) using a superconducting quantum interferometer with spatially distributed Josephson junctions. The studies were made on a thin film grown on a SrTiO3 tetracrystal substrate. The superconducting transition temperature was about 29 K which indicates that the sample is close to optimal doping. The magnetic field dependence of the critical current gives strong evidence for a predominant dx(2)(-y(2)) order parameter symmetry of the sample measured. It also gives upper limits for the s-wave component in a mixed order parameter of the type s+idx(2)(-y(2)).  相似文献   

4.
We study the effects of RuO6 rotation on Ru 4d band structures in metallic Ca2-xSrxRuO4 (0.5 < or = x < or = 2) by first-principles electronic structure calculations. We show that the RuO6 rotation leads to the strong hybridization between dxy and dx2-y2 bands, resulting in orbital-dependent changes in the band structure. The dxy band near the Fermi level is significantly modified and thereby a severely reconstructed Fermi surface with nested sections appears at x=0.5. In contrast, the dyz and dzx bands are found to be insensitive to the rotational distortions induced by the Ca substitution. Our results imply that the progressive changes in the magnetic, optical, and thermal properties of Ca2-xSrxRuO4 are associated with the dxy band.  相似文献   

5.
Although initially quite controversial, it is now widely accepted that the Cooper pairs in optimally doped cuprate superconductors have predominantly dx2-y2 wave function symmetry, and the controversy has now shifted to whether the pairing symmetry changes away from optimal doping. Here we present phase-sensitive tricrystal experiments on three cuprate systems: Y(0.7)Ca(0.3)Ba(2)Cu(3)O(7-delta) (Ca-doped Y-123), La2-xSrxCuO4 (La-214), and Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi-2212), with doping levels covering the underdoped, optimal, and overdoped regions. Our work implies that predominantly d x2-y2 pairing symmetry is robust over a large variation in doping.  相似文献   

6.
We propose that the superconducting pairing symmetry of organic superconductors kappa-(BEDT-TTF)2X can be determined by measuring the position in momentum space of the incommensurate peaks of the spin susceptibility. Using the weak coupling BCS theory and including the many-body effects via the random-phase approximation for the Hubbard model on an anisotropic triangular lattice, we show that the position of these peaks is uniquely determined by the pairing symmetry of the superconducting state and the geometry of the Fermi surface. We demonstrate the different incommensurate patterns of spin responses for d(x(2)-y(2-)) and d(xy)-like pairing states. In addition, we find that there is no spin resonance mode in the reasonable range of parameters discussed.  相似文献   

7.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

8.
We have directly observed well-separated Josephson vortex splinters with unquantized magnetic flux at asymmetric 45 degrees grain boundaries in YBa(2)Cu(3)O(7-delta) films by imaging magnetic flux with scanning SQUID microscopy. The existence of these splinter vortices has been predicted and is well described by a model based on dx(2)(-y(2)) pairing symmetry and facetting of the grain boundary on a length scale shorter than the Josephson penetration depth.  相似文献   

9.
Since the nature of pairing interactions is manifested in the superconducting gap symmetry, the exact gap structure, particularly any deviation from the simple d(x(2)-y(2)) symmetry, would help in elucidating the pairing mechanism in high- T(c) cuprates. Anisotropic heat transport measurement in Bi(2)Sr(2)CaCu(2)O(8+delta) reveals that the quasiparticle populations are different for the two nodal directions and thus the gap structure must be uniquely anisotropic, suggesting that pairing is governed by interactions with a rather complicated anisotropy. Intriguingly, it is found that the "plateau" in the magnetic-field dependence of the thermal conductivity is observed only in the b-axis transport.  相似文献   

10.
We study the electronic structure near impurities in the d-density-wave (DDW) state, a possible candidate phase for the pseudogap region of the high-temperature superconductors. We show that the density of states near a nonmagnetic impurity in the DDW state is qualitatively different from that in a superconductor with dx(2)(-y(2)) symmetry. Thus, the electronic structure near impurities can provide insight into the nature of the two phases recently observed by scanning tunneling microscopy experiments in the superconducting state of underdoped Bi-2212 compounds.  相似文献   

11.
The role of electron correlation on different pairing symmetries are discussed in details where the electron correlation has been treated within the slave boson formalism. It is shown that for a pure s or pure d wave pairing symmetry, the electronic correlation suppresses the s wave gap magnitude (as well as the ) at a faster rate than that for the d wave gap. On the other hand, a complex order parameter of the form () shows anomalous temperature dependence. For example, if the temperature () at which the d wave component of the complex order parameter vanishes happens to be larger than that for the s wave component (), then the growth of the d wave component is arrested with the onset of the s wave component of the order parameter. In this mixed phase however, we find that the suppression in different components of the gap as well as the corresponding due to coulomb correlation are very sensitive to the relative pairing strengths of s and d channels as well as the underlying lattice. Interestingly enough, in such a scenario (for a case of )the gap magnitude of the d wave component increases with electron correlation but not for certain values of electron correlation. However, this never happens in case of the s wave component. We also calculate the temperature dependence of the superconducting gap along both the high symmetry directions ( and ) in a mixed symmetry pairing state and the thermal variation of the gap anisotropy [0pt][0pt] with electron correlation. The results are discussed with reference to experimental observations. Received: 26 August 1997 / Revised: 31 December 1997 / Accepted: 28 January 1998  相似文献   

12.
The phase diagram of the quasi-2D Ce(Ir,Rh)In5 system contains two distinct superconducting domes. By the thermal transport measurements in rotating magnetic fields H, we pinned down the superconducting gap structure of CeIrIn5 in the second dome, located distant from the first dome in proximity to an antiferromagnetic quantum critical point. Clear fourfold oscillation was observed when H is rotated within the ab plane, while no oscillation was observed within the bc plane. In sharp contrast to previous reports, our results are most consistent with dx2-y2 symmetry, implying that the superconductivity in the second phase is also mediated by antiferromagnetic spin fluctuations.  相似文献   

13.
We introduce an effective low-energy pairing model for Fe-based superconductors with s- and d-wave interaction components and a small number of input parameters and use it to study the doping evolution of the symmetry and the structure of the superconducting gap. We argue that the model describes the entire variety of pairing states found so far in the Fe-based superconductors and allows one to understand the mechanism of the attraction in s(±) and d(x(2)-y(2)) channels, the competition between s- and d-wave solutions, and the origin of superconductivity in heavily doped systems, when only electron or only hole pockets are present.  相似文献   

14.
We analyze edge currents and edge bands at the surface of a time-reversal symmetry breaking dx2-y2 + id(xy) superconductor. We show that the currents have large Friedel oscillations with two interfering frequencies: square root of 2kF from subgap states, and 2kF from the continuum. The results are based independently on a self-consistent slave-boson mean-field theory for the t-J model on a triangular lattice, and on a T-matrix scattering theory calculation. The shape of the edge-state band, as well as the particular frequency square root of 2kF of the Friedel oscillations, are attributes unique for the dx2-y2 + id(xy) case, and may be used as a fingerprint for its identification. Extensions to different time-reversal symmetry breaking superconductors can be achieved within the same approach.  相似文献   

15.
We investigate the pairing symmetry of layered BiS2 compomlds by assuming that electron-electron correlation is still important so that the pairing is rather short range. We lind that the extended .s-wave pairing symmetry always wins over d-wave when the pairing is confined between two short range sites up to next nearest neighbors. The pairing strength is peaked around the doping level :r = 0.5. which is consistent with experimental observation. The extended s-wave pairing symmetry is very robust against spin orbital coupling because it is mainly determined by the structure of Fermi surfaces, Moreover. the extended s-wave pafiring can be distinguished from conventional swave pairing by measuring and comparing superconducting gaps of different Fermi surfaces.  相似文献   

16.
Based on an effective Hamiltonian specified in the triangular lattice with possible p(x)+/-ip(y)- or dx(2)(-y(2))+/-id(xy)-wave pairing, which has close relevance to the newly discovered Na0.35CoO2.yH(2)O, the electronic structure of the vortex state is studied by solving the Bogoliubov-de Gennes equations. It is found that p(x)+/-ip(y) wave is favored for the electron doping as the hopping integral t<0. The lowest-lying vortex bound states are found to have, respectively, zero and positive energies for p(x)+/-ip(y)- and dx(2)(-y(2))+/-id(xy)-wave superconductors, whose vortex structures exhibit the intriguing sixfold symmetry. In the presence of strong on-site repulsion, the antiferromagnetic order and local ferromagnetic moment are induced around the vortex cores for the former and the latter, respectively, both of which cause the splitting of the local density of states peaks due to the lifting of spin degeneracy.  相似文献   

17.
We study the emergence of a magnetic resonance in the superconducting state of the electron-doped cuprate superconductors. We show that the recently observed resonance peak in the electron-doped superconductor Pr0.88LaCe0.12CuO4-delta is consistent with an overdamped spin exciton located near the particle-hole continuum. We present predictions for the magnetic-field dependence of the resonance mode as well as its temperature evolution in those parts of the phase diagram where dx2-y2-wave superconductivity may coexist with an antiferromagnetic spin-density wave.  相似文献   

18.
We present a resonating-valence-bond theory of superconductivity for the Hubbard-Heisenberg model on an anisotropic triangular lattice. Our calculations are consistent with the observed phase diagram of the half-filled layered organic superconductors, such as the beta, beta', kappa, and lambda phases of (BEDT-TTF)2X [bis(ethylenedithio)tetrathiafulvalene] and (BETS)2X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order transition from a Mott insulator to a dx2-y2 superconductor with a small superfluid stiffness and a pseudogap with dx2-y2 symmetry.  相似文献   

19.
We show that the recently observed spin resonance modes in heavy-fermion superconductors CeCoIn5 and CeCu2Si2 are magnetic excitons originating from superconducting quasiparticles. The wave vector Q of the resonance state leads to a powerful criterion for the symmetry and node positions of the unconventional gap function. The detailed analysis of the superconducting feedback on magnetic excitations reveals that the symmetry of the superconducting gap corresponds to a singlet d_{x;{2}-y;{2}} state symmetry in both compounds. In particular this resolves the long-standing ambiguity of the gap symmetry in CeCoIn5. We demonstrate that in both superconductors the resonance peak shows a significant dispersion away from Q which can be checked experimentally. Our analysis reveals the similar origin of the resonance peaks in the two heavy-fermion superconductors and in layered cuprates.  相似文献   

20.
Quasiparticle tunneling spectra of the electron-doped ( n-type) infinite-layer cuprate Sr0.9La0.1CuO2 reveal characteristics that counter a number of common phenomena in the hole-doped ( p-type) cuprates. The optimally doped Sr0.9La0.1CuO2 with T(c) = 43 K exhibits a momentum-independent superconducting gap Delta = 13.0+/-1.0 meV that substantially exceeds the BCS value, and the spectral characteristics indicate insignificant quasiparticle damping by spin fluctuations and the absence of pseudogap. The response to quantum impurities in the Cu sites also differs fundamentally from that of the p-type cuprates with d(x(2)-y(2))-wave pairing symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号