首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transverse spin fluctuations are introduced to the density functional theory for superconductors (SCDFT). Paramagnons are treated within the random phase approximation and assumed to be the same for the normal and superconducting state. The effect of spin fluctuations on Tc is studied for a few simple metals at ambient pressure and niobium at several pressures up to 80 GPa.  相似文献   

2.
In this Letter we construct a spinor transport theory and derive the equations of motion for the distribution functions for currents in noncollinear magnetic multilayers. We find the length scale which characterizes the transverse spin current is of the order of 3 nm for a ferromagnetic 3d transition metal such as Co; this alters one's prediction of the spin torque generated for free magnetic layers less than 3 nm. In the limit of large exchange splitting we reproduce the results previously found for spin currents across noncollinear multilayers inasmuch as there are no transverse spin currents in the layers themselves in this limit.  相似文献   

3.
We present a generalized Landauer-Büttiker transport theory for multiterminal spin transport in the presence of spin-orbit interaction. Using this theory we point out that there exists equilibrium spin currents and nonequilibrium pure spin currents, without any magnetic element in the system. Quantitative results are presented for a Y-shaped conductor. It is shown that pure spin currents cause a voltage drop and, hence, can be measured.  相似文献   

4.
《Physics letters. A》2020,384(13):126256
Based on the density functional theory along with nonequilibrium Green's function technique, we investigate the spin caloritronic transport properties of ferromagnetic one-dimensional Mn phthalocyanine nanoribbon under different magnetic configurations. The results demonstrate the thermally-driven spin-dependent currents depend strongly on the choice of magnetic configuration. The underlying mechanism is analyzed by the Fermi-Dirac distribution function, spin-resolved transmission spectra, band structures and current spectra. And based on those intriguing spin caloritronic transport properties, we design thermal spin AND, OR and NOT molecular logic gates.  相似文献   

5.
Within the weak-coupling regime the spin current through a quantum dot system is calculated using a quantum master equation approach which includes a sum over Matsubara terms. To be able to efficiently calculate, also at low temperatures, the time evolution of the reduced density matrix a high-temperature approximation was derived which proves to be rather accurate in comparison to the exact results. In the present model it is assumed that the energy levels of the dot are split by a constant magnetic field. An additional external (laser) field is used to control the currents of the two spin polarizations. This is either done using the phenomenon of coherent destruction of tunneling or optimal control theory. Scenarios are studied in which the spin current is reversed while the charge current is kept constant.  相似文献   

6.
The spin-orbit (SO) interaction acts on electrons in condensed matter as an effective non-Abelian field. I show that a magnetic component of this field inevitably generates diamagnetic color currents which are just the equilibrium spin currents discussed in a condensed matter context. Since the non-Abelian magnetic field generated by SO coupling is generically nonzero, the equilibrium spin currents are universally present in any physical system, e.g., in molecules or solids with SO interaction. These universal spin currents provide an explicit realization of a non-Abelian Landau diamagnetism.  相似文献   

7.
We calculate the spin density, spin currents and spin torque due to a spin polarized current on a magnetic domain wall juxtaposed to or inserted in a conventional superconductor. The superconductor is part of a heterostructure of the type NSN or FSF. In general, the spin torque exerted on the domain wall is weaker with respect to a normal metal. However, there are regimes where the torque is enhanced with respect to the normal metal. In these regimes the motion of the domain wall is therefore more efficient. A notable case is the passing of an unpolarized current which leads to a finite torque in the case of the superconductor.  相似文献   

8.
We present a semiclassical theory of spin diffusion in a ferromagnetic metal subject to a temperature gradient. Spin-flip scattering can generate pure thermal spin currents by short-circuiting spin channels while suppressing spin accumulations. A thermally induced spin density is locally generated when the energy dependence of the density of states is spin polarized.  相似文献   

9.
The behavior of charge and spin persistent currents in an integrable lattice ring of strongly correlated electrons with a magnetic impurity is exactly studied. Our results manifest that the oscillations of charge and spin persistent currents are similar to the ones, earlier obtained for integrable continuum models with a magnetic impurity. The difference is due to two (instead of one) Fermi velocities of low-lying excitations. The form of oscillations in the ground state is “saw-tooth”-like, generic for any multi-particle coherent one-dimensional models. The integrable magnetic impurity introduces net charge and spin chiralities in the generic integrable lattice system, which determine the initial phase shifts of charge and spin persistent currents. We show that the magnitude of the charge persistent current in the generic Kondo situation does not depend on the parameters of the magnetic impurity, unlike the (magneto)resistivity of transport currents. Received 30 January 2003 / Received in final form 12 March 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: zvyagin@fy.chalmers.se  相似文献   

10.
High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation   总被引:1,自引:0,他引:1  
Alkali-metal magnetometers compete with SQUID detectors as the most sensitive magnetic field sensors. Their sensitivity is limited by relaxation due to spin-exchange collisions. We demonstrate a K magnetometer in which spin-exchange relaxation is completely eliminated by operating at high K density and low magnetic field. Direct measurements of the signal-to-noise ratio give a magnetometer sensitivity of 10 fT Hz(-1/2), limited by magnetic noise produced by Johnson currents in the magnetic shields. We extend a previous theoretical analysis of spin exchange in low magnetic fields to arbitrary spin polarizations and estimate the shot-noise limit of the magnetometer to be 2x10(-18) T Hz(-1/2).  相似文献   

11.
It has been known for some time that the exchange-correlation potential in time-dependent density-functional theory is an intrinsically nonlocal functional of the density as soon as one goes beyond the adiabatic approximation. In this paper we show that a much more severe nonlocality problem, with a completely different physical origin, plagues the exchange-correlation potentials in time-dependent spin-density functional theory. We show how the use of the spin current density as a basic variable solves this problem, and we provide an explicit local expression for the exchange-correlation fields as functionals of the spin currents.  相似文献   

12.
A long-range dynamic interaction between ferromagnetic films separated by normal-metal spacers is reported, which is communicated by nonequilibrium spin currents. It is measured by ferromagnetic resonance and explained by an adiabatic spin-pump theory. In such a resonance the spin-pump mechanism of spatially separated magnetic moments leads to an appreciable increase in the resonant linewidth when the resonance fields are well apart, and results in a dramatic linewidth narrowing when the resonant fields approach each other.  相似文献   

13.
Using spin density functional theory within the framework of the local spin density approximation with Perdew-Zunger type exchange-correlation energy, ferromagnetism in a quasi-two-dimensional electron gas (Q-2DEG) is studied. The electronic and magnetic structures of a thin film are calculated as a function of film thickness and electron density. Ferromagnetism in the Q-2DEG is found to appear at a higher electron density than in the three-dimensional electron gas. Unless a film is very thin, with decreasing electron density, a magnetic phase transition occurs from a spin-unpolarized fluid to a Wigner film with surface magnetism, in which the spin polarization localizes only in the neighborhood of surfaces. Further decreasing density induces another transition to a fully spin-polarized ferromagnetic Wigner film.  相似文献   

14.
Spin-polarized transport through a coupled double-dot   总被引:1,自引:0,他引:1  
We investigate the quantum transport through a mesoscopic device consisting of an open, lateral double-quantum-dot coupled by time oscillating and spin-polarization dependent tunneling which results from a static magnetic field applied in the tunneling junction. In the presence of a non-vanishing bias voltage applied to two attached macroscopic leads both spin and charge currents are driven through the device. We demonstrate that the spin and charge currents are controllable by adjusting the gate voltage, the frequency of driving field and the magnitude of the magnetic field as well. An interesting resonance phenomenon is observed.  相似文献   

15.
《Physics letters. A》2020,384(11):126228
Spin-orbit coupling enables charge currents to give rise to spin currents and vice versa, which has applications in non-volatile magnetic memories, miniature microwave oscillators, thermoelectric converters and Terahertz devices. In the past two decades, a considerable amount of research has focused on electrical spin current generation in different types of nonmagnetic materials. However, electrical spin current generation in ferromagnetic materials has only recently been actively investigated. Due to the additional symmetry breaking by the magnetization, ferromagnetic materials generate spin currents with different orientations of spin direction from those observed in nonmagnetic materials. Studies centered on ferromagnets where spin-orbit coupling plays an important role in transport open new possibilities to generate and detect spin currents. We summarize recent developments on this subject and discuss unanswered questions in this emerging field.  相似文献   

16.
利用漂移扩散理论研究了磁性pn结中自旋的输运特性.探讨了外加电压、平衡自旋极化率、外加自旋注入和自旋寿命对磁性pn结电流密度和电阻的影响,讨论了磁性pn结自旋伏特效应与pn结宽度的关系.发现平衡自旋极化率使得不同自旋方向电子具有不同的势垒高度从而能有效调制电流;而外加自旋注入则为磁性pn结提供了非平衡自旋极化电子从而达到对电流的调制作用,同时发现自旋伏特电流随准中性p区宽度减小而增大. 关键词: 磁性pn结 自旋极化率 自旋寿命 自旋伏特效应  相似文献   

17.
The correlation of a magnetic impurity spin with the spin density of the conduction electrons in a dilute magnetic alloy is calculated non-perturbationally on the basis of the Nagaoka theory. It is shown that there are anomalies due to the Kondo effect in the long range behaviour of this correlation which contradicts the bound state interpretation of the Kondo effect. The most interesting detail is the appearance of a non-oscillating contribution to the correlation.  相似文献   

18.
We study conductance and adiabatic pumped charge and spin currents in a graphene quantum pump with Corbino geometry in the presence of an applied perpendicular magnetic field. Pump is driven by the periodic and out of phase modulations of the magnetic field and an electrostatic potential applied to the ring area of the pump. We show that Zeeman splitting, despite its smallness, suppresses conductance and pumped current oscillations at zero doping. Moreover, quite considerable spin conductance and pumped spin current are generated at low dopings due to Zeeman splitting. We find that pumped charge and spin currents increase by increasing the magnetic field, with small oscillations, until they are suppressed due to the effect of nonzero doping and Zeeman splitting.  相似文献   

19.
The magnetic and electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first principles through density functional theory calculations within the generalized gradient approximations (GGA)+U scheme. The spin exchange interactions up to the third nearest neighbours in the ab plane as well as the coupling between adjacent layers are calculated to examine the magnetism and spin frustration. It is found that CuCrO2 has a natural two-dimensional characteristic of the magnetic interaction. Using Monte-Carlo simulation, we obtain the Neel temperature to be 29.9 K, which accords well with the experimental value of 24 K. Based on non-collinear magnetic structure calculations, we verify that the incommensurate spiral-spin structure with (110) spiral plane is believable for the magnetic ground state, which is consistent with the experimental observations. Due to intra-layer geometric spin frustration, parallel helical-spin chains arise along the a, b, or a + b directions, each with a screw-rotation angle of about 120°. Our calculations of the density of states show that the spin frustration plays an important role in the change of d-p hybridization, while the spin-orbit coupling has a very limited influence on the electronic structure.  相似文献   

20.
The distributions of spin and currents modulated by magnetic field in a transverse parabolic confined two-dimensional electronic system with a Rashba spin--orbit coupling have been studied numerically. It is shown that the spin accumulation and the spin related current are generated by magnetic field if the spin--orbit coupling is presented. The distributions of charge and spin currents are antisymmetrical along the cross-section of confined system. A transversely applied electric field does not influence the characteristic behaviour of charge- and spin-dependent properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号